cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A189689 Number of n X n binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

2, 16, 292, 11637, 862652, 140346362, 43645304766, 30140493826752, 41065086729341527, 123548887542841478730, 745009928964016992782018, 9811185735768630724517609865, 262092653227176839857198569967286
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Diagonal of A189696

Examples

			Some solutions for 3X3
..1..0..0....0..0..1....1..1..1....1..0..0....0..1..1....0..0..0....0..1..1
..1..1..1....1..1..1....1..0..1....0..1..1....0..1..0....0..1..0....1..1..1
..0..0..1....0..0..0....0..0..1....0..0..1....0..1..1....0..0..0....0..1..0
		

A189690 Number of nX3 binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

8, 64, 292, 1298, 5172, 20316, 77752, 295720, 1117080, 4209924, 15835990, 59521532, 223600028, 839772726, 3153450118, 11840705184, 44458053838, 166922053694, 626717259422, 2353026409758, 8834468527674, 33169066709822, 124533341936372
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Column 3 of A189696

Examples

			Some solutions for 4X3
..1..1..0....0..0..0....0..1..0....0..0..1....0..1..1....1..1..0....1..1..0
..1..1..1....1..1..1....1..1..1....1..1..0....1..0..0....0..0..0....1..1..1
..0..1..0....1..1..1....1..1..1....1..1..1....1..1..0....0..0..0....1..0..0
..0..1..0....0..1..0....0..1..1....0..1..0....0..0..0....0..0..0....0..0..1
		

Formula

Empirical: a(n) = 7*a(n-1) -9*a(n-2) -31*a(n-3) +76*a(n-4) +22*a(n-5) -173*a(n-6) +69*a(n-7) +151*a(n-8) -111*a(n-9) -48*a(n-10) +52*a(n-11) +4*a(n-12) -8*a(n-13)

A189691 Number of nX4 binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

16, 256, 1723, 11637, 65297, 370045, 1999150, 10867960, 58328512, 313915268, 1683430923, 9037137069, 48464436537, 259999868553, 1394419535984, 7479394198332, 40114452013630, 215155499724100, 1153964519450151
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Column 4 of A189696

Examples

			Some solutions for 3X4
..0..0..0..0....1..1..0..1....0..0..1..0....1..1..0..1....1..1..1..0
..1..1..1..1....1..1..1..1....1..1..1..1....0..1..0..1....0..0..0..0
..1..0..1..1....0..0..1..0....0..1..1..1....0..0..0..0....1..0..1..0
		

Formula

Empirical: a(n) = 6*a(n-1) +9*a(n-2) -72*a(n-3) -15*a(n-4) +208*a(n-5) +249*a(n-6) -365*a(n-7) -957*a(n-8) +452*a(n-9) +841*a(n-10) +303*a(n-11) +1413*a(n-12) -2116*a(n-13) -3083*a(n-14) +2561*a(n-15) +1244*a(n-16) -148*a(n-17) +1056*a(n-18) -2105*a(n-19) -508*a(n-20) +1674*a(n-21) -720*a(n-22) -330*a(n-23) +592*a(n-24) -100*a(n-25) -120*a(n-26) +32*a(n-27)

A189692 Number of nX5 binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

32, 1024, 10327, 107720, 862652, 7174919, 55423132, 437257670, 3370409239, 26229648516, 202524248054, 1569866749149, 12134837088544, 93944044770612, 726545931663671, 5622258695272390, 43490662494731848, 336493987012953931
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Column 5 of A189696

Examples

			Some solutions for 3X5
..1..0..1..1..0....1..0..0..1..0....1..1..1..1..0....0..0..1..1..0
..1..1..1..1..0....0..1..0..0..1....1..1..0..1..1....1..0..1..1..0
..1..1..1..0..0....0..1..0..0..0....0..0..1..0..0....1..0..0..0..0
		

Formula

Empirical: a(n) = 12*a(n-1) -4*a(n-2) -375*a(n-3) +986*a(n-4) +2837*a(n-5) -10457*a(n-6) -12075*a(n-7) +44784*a(n-8) +77132*a(n-9) -134947*a(n-10) -432773*a(n-11) +489152*a(n-12) +1171916*a(n-13) -1323977*a(n-14) -949637*a(n-15) +1186417*a(n-16) -1860594*a(n-17) +1967993*a(n-18) +4983288*a(n-19) -3750595*a(n-20) -5876599*a(n-21) -600116*a(n-22) +6085771*a(n-23) -1152715*a(n-24) +534318*a(n-25) +16163163*a(n-26) -19783235*a(n-27) -16810782*a(n-28) +28251824*a(n-29) -11625415*a(n-30) -5089161*a(n-31) +33146958*a(n-32) -21874760*a(n-33) -22681947*a(n-34) +22092987*a(n-35) +1519837*a(n-36) -8389574*a(n-37) +9529533*a(n-38) +106606*a(n-39) -11474707*a(n-40) +3478284*a(n-41) +8557326*a(n-42) -5221268*a(n-43) -3641270*a(n-44) +4110988*a(n-45) +359280*a(n-46) -1756112*a(n-47) +405392*a(n-48) +378120*a(n-49) -198000*a(n-50) -24528*a(n-51) +36544*a(n-52) -3904*a(n-53) -2432*a(n-54) +512*a(n-55) for n>56

A189693 Number of nX6 binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

64, 4096, 61996, 997264, 11451149, 140346362, 1553640701, 17872674996, 198287096355, 2240961706438, 24972074224456, 280570140162495, 3134318411211896, 35138150310304642, 392994307064068970
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Column 6 of A189696

Examples

			Some solutions for 3X6
..0..1..1..1..1..1....1..1..1..1..1..0....0..0..1..0..0..0....1..1..1..1..0..0
..1..1..0..0..1..0....1..1..1..0..1..1....0..1..1..1..0..1....0..0..1..1..1..1
..0..1..1..0..1..0....0..1..1..0..1..1....0..0..0..0..0..0....1..1..0..1..0..0
		

A189694 Number of nX7 binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

128, 16384, 371641, 9205575, 151788273, 2748122586, 43645304766, 733660344149, 11722251157012, 192737455311869, 3101316117820858, 50582965637175513, 817179337255729430, 13284346442987716235, 215031581266863776172
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Column 7 of A189696

Examples

			Some solutions for 3X7
..0..1..0..1..0..1..1....0..1..0..1..1..1..0....0..0..0..1..1..0..0
..1..1..0..1..1..0..1....1..0..1..0..0..0..0....1..1..1..0..1..1..1
..0..1..0..1..1..0..0....0..1..0..1..0..1..0....0..0..1..0..0..0..0
		

A189695 Number of nX8 binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

256, 65536, 2227333, 84987637, 2010430729, 53801184855, 1226051976034, 30140493826752, 693472588394369, 16601078462607021, 385676526874164679, 9137625077782012475, 213472003223589754146, 5034772028641923262353
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Column 8 of A189696

Examples

			Some solutions for 3X8
..0..0..0..1..0..1..0..1....0..0..0..0..0..1..1..1....0..0..0..1..0..0..0..1
..1..1..1..0..0..1..1..0....1..1..1..1..1..0..1..1....0..0..1..0..1..1..1..0
..0..0..0..1..0..1..0..0....1..0..0..0..1..0..0..0....0..0..0..1..0..0..1..1
		

A189697 Number of 4Xn binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

12, 144, 1298, 11637, 107720, 997264, 9205575, 84987637, 784968276, 7250191247, 66962229085, 618461917882, 5712150826447, 52757783396467, 487273980078400, 4500491954718670, 41566823940472846, 383913783539151670
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Row 4 of A189696

Examples

			Some solutions for 4X3
..1..1..0....1..1..0....1..0..1....1..0..1....0..1..0....1..1..1....0..1..0
..1..1..1....0..1..0....1..1..0....1..1..1....1..1..0....0..1..0....0..0..1
..1..1..1....0..0..0....0..0..1....0..0..1....0..1..0....1..1..1....0..1..0
..0..0..0....0..1..0....0..1..1....0..1..0....1..0..0....0..1..0....0..1..0
		

Formula

Empirical: a(n) = 12*a(n-1) -14*a(n-2) -138*a(n-3) +487*a(n-4) -2320*a(n-5) +3108*a(n-6) +19078*a(n-7) -43985*a(n-8) +63715*a(n-9) -58934*a(n-10) -538144*a(n-11) +884140*a(n-12) +235100*a(n-13) -383512*a(n-14) +2515360*a(n-15) -4168592*a(n-16) -2271152*a(n-17) +2599872*a(n-18) -3563680*a(n-19) +6711296*a(n-20) +3621888*a(n-21) -3288064*a(n-22) +1212416*a(n-23) -3323392*a(n-24) -1750016*a(n-25) +1122304*a(n-26) +45056*a(n-27) +393216*a(n-28) +196608*a(n-29)

A189698 Number of 5Xn binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

20, 400, 5172, 65297, 862652, 11451149, 151788273, 2010430729, 26638642226, 353018801580, 4678246752829, 61995665582140, 821565095555503, 10887399620742611, 144280214103179733, 1912006322548221320
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Row 5 of A189696

Examples

			Some solutions for 5X3
..1..0..1....1..1..0....1..1..1....0..0..0....0..1..1....1..1..1....0..1..1
..1..1..0....1..1..0....1..0..1....1..1..1....1..1..0....1..0..1....1..0..1
..0..0..1....0..1..0....1..0..1....1..1..0....1..1..0....0..1..1....0..1..0
..0..1..0....0..0..0....0..0..1....1..0..0....0..1..0....0..1..1....0..1..0
..0..0..1....0..1..0....1..0..1....0..1..0....0..0..0....0..1..0....0..1..0
		

Formula

Empirical: a(n) = 20*a(n-1) -60*a(n-2) -633*a(n-3) +4289*a(n-4) -19321*a(n-5) +45093*a(n-6) +478124*a(n-7) -2450407*a(n-8) +3842305*a(n-9) -5871294*a(n-10) -109929744*a(n-11) +546273704*a(n-12) +220749058*a(n-13) -3057836472*a(n-14) +4168921034*a(n-15) -11914638925*a(n-16) -14152632954*a(n-17) +115745535531*a(n-18) -51347303247*a(n-19) +2966824602*a(n-20) +207246843786*a(n-21) -1457083257908*a(n-22) +128501680584*a(n-23) +1854676590096*a(n-24) -844352601056*a(n-25) +5479925969392*a(n-26) +1148855458112*a(n-27) -10789933618176*a(n-28) -902145093976*a(n-29) -5459853101552*a(n-30) -3627163886960*a(n-31) +18812592077712*a(n-32) +8566261898624*a(n-33) -1211282099328*a(n-34) -1296831985536*a(n-35) -12299160022784*a(n-36) -6520706736128*a(n-37) +3578172086272*a(n-38) +2696006297600*a(n-39) +2021760851968*a(n-40) +843021844480*a(n-41) -530584764416*a(n-42) -302591115264*a(n-43) -113839702016*a(n-44) -44088426496*a(n-45) +14579400704*a(n-46) +2214592512*a(n-47) for n>48

A189699 Number of 6Xn binary arrays without the pattern 0 0 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

33, 1089, 20316, 370045, 7174919, 140346362, 2748122586, 53801184855, 1053901033470, 20648231159172, 404572006660088, 7927242763654571, 155332036036173579, 3043718021008444561, 59641726902710453442
Offset: 1

Views

Author

R. H. Hardin Apr 25 2011

Keywords

Comments

Row 6 of A189696

Examples

			Some solutions for 6X3
..1..1..1....1..1..1....1..0..1....1..1..0....1..0..1....1..0..1....0..1..1
..1..1..1....1..0..1....0..1..1....1..1..1....1..1..0....1..1..1....1..1..0
..1..1..1....0..1..1....1..1..1....1..0..0....1..1..1....0..0..1....1..1..1
..0..1..0....1..1..1....1..0..1....1..0..1....1..0..1....1..1..1....1..1..0
..1..1..1....1..0..0....0..1..1....0..0..1....1..1..0....1..1..1....1..1..1
..1..0..0....1..1..0....0..1..0....1..0..0....0..0..0....1..0..1....1..1..1
		
Showing 1-10 of 12 results. Next