This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189722 #57 Dec 02 2024 16:29:52 %S A189722 1,2,3,5,8,13,21,34,55,89,141,226,362,580,921,1468,2344,3740,5922, %T A189722 9413,14978,23829,37686,59770,94882,150606,237947,376784,597063, %U A189722 946086,1493497,2361970,3737699,5914635,9330438,14741315,23301716,36833270,58071568 %N A189722 Number of self-avoiding walks of length n on square lattice such that at each point the angle turns 90 degrees (the first turn is assumed to be to the left - otherwise the number must be doubled). %C A189722 The number of snakes composed of n identical segments such that the snake starts with a left turn and the other (n-2) joints are bent at 90-degree angles, either to the left or to the right, in such a way that the snake does not overlap. %C A189722 Vi Hart came up with this idea of snakes (see the link below). %H A189722 Vaclav Kotesovec, <a href="/A189722/b189722.txt">Table of n, a(n) for n = 2..50</a> %H A189722 Vi Hart, <a href="http://vihart.com/blog/how-to-snakes/">How To Snakes</a> [Broken link?] %H A189722 Vi Hart, <a href="https://www.youtube.com/watch?v=Gx5D09s5X6U">How to snakes</a>, YouTube, March 2011. %H A189722 IBM Corp., <a href="https://research.ibm.com/haifa/ponderthis/challenges/April2011.html">Ponder This</a>, April 2011. %e A189722 For n=2 the a(2)=1 there is only one snake: %e A189722 (0,0), (0,1), (-1,1). %e A189722 For n=3 the a(3)=2 there are two snakes: %e A189722 (0,0), (0,1), (-1,1), (-1,0); %e A189722 (0,0), (0,1), (-1,1), (-1,2). %e A189722 Representing the walk (or snake) as a sequence of turns I and -I in the complex plane, with the initial condition that the first turn is I, for length 2 we have [I], for length 3 we have [I,I], [I,-I], and for length 4 we have [I,I,-I], [I,-I,I], [I,-I,-I]. %p A189722 ValidSnake:=proc(P) local S, visited, lastdir, lastpoint, j; %p A189722 S:={0, 1}; lastdir:=1; lastpoint:=1; %p A189722 for j from 1 to nops(P) do lastdir:=lastdir*P[j]; %p A189722 lastpoint:=lastpoint+lastdir; %p A189722 S:=S union {lastpoint}; %p A189722 od; %p A189722 if (nops(S) = (2+nops(P))) then return(true); else return(false); fi; %p A189722 end; %p A189722 NextList:=proc(L) local S, snake, newsnake; %p A189722 S:={ }; %p A189722 for snake in L do %p A189722 newsnake:=[op(snake), I]; %p A189722 if ValidSnake(newsnake) then S:=S union {newsnake}; fi; %p A189722 newsnake:=[op(snake), -I]; %p A189722 if ValidSnake(newsnake) then S:=S union {newsnake}; fi; %p A189722 od; %p A189722 return(S union { }); %p A189722 end; %p A189722 L:={[I]}: %p A189722 for k from 3 to 25 do %p A189722 L:=NextList(L): %p A189722 print(k, nops(L)); %p A189722 od: %p A189722 # second Maple program: %p A189722 a:= proc(n) local v, b; %p A189722 v:= proc() true end: v(0, 0), v(0, 1):= false$2: %p A189722 b:= proc(n, x, y, d) local c; %p A189722 if v(x, y) then v(x, y):= false; %p A189722 c:= `if`(n=0, 1, %p A189722 `if`(d=1, b(n-1, x, y+1, 2) +b(n-1, x, y-1, 2), %p A189722 b(n-1, x+1, y, 1) +b(n-1, x-1, y, 1) )); %p A189722 v(x, y):= true; c %p A189722 else 0 fi %p A189722 end; %p A189722 b(n-2, -1, 1, 1) %p A189722 end: %p A189722 seq(a(n), n=2..25); # _Alois P. Heinz_, Jun 10 2011 %t A189722 a[n_] := Module[{v, b}, v[_, _] = True; v[0, 0] = v[0, 1] = False; b[m_, x_, y_, d_] := Module[{c}, If[v[x, y], v[x, y] = False; c = If[m == 0, 1, If[d == 1, b[m-1, x, y+1, 2] + b[m-1, x, y-1, 2], b[m-1, x+1, y, 1] + b[m-1, x-1, y, 1]]]; v[x, y] = True; c, 0]]; b[n-2, -1, 1, 1]]; Table[ a[n], {n, 2, 25}] (* _Jean-François Alcover_, Nov 07 2015, after _Alois P. Heinz_ *) %K A189722 nonn,walk %O A189722 2,2 %A A189722 _Dan Dima_ and _Stephen C. Locke_, Apr 25-26 2011 %E A189722 a(33)-a(40) from _Alois P. Heinz_, Jun 10 2011