This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189731 #29 Nov 06 2022 09:10:40 %S A189731 0,1,1,3,2,17,4,23,25,61,18,107,40,421,1363,1103,210,5777,492,7563, %T A189731 24475,19801,2786,103681,33552,135721,146401,355323,39650,1860497, %U A189731 97108,2435423,2627065,6376021,20633238,11128427,1459960,43701901 %N A189731 a(n) = numerator of B(0,n) where B(n,n) = 0, B(n-1,n) = 1/n, and B(m,n) = B(m-1,n+1) - B(m-1,n). %C A189731 Square array B(m,n) begins: %C A189731 0, 1/1, 1/1, 3/2, 2/1, 17/6, ... %C A189731 1/1, 0, 1/2, 1/2, 5/6, 7/6, ... %C A189731 -1/1, 1/2, 0, 1/3, 1/3, 7/12, ... %C A189731 3/2, -1/2, 1/3, 0, 1/4, 1/4, ... %C A189731 -2/1, 5/6, -1/3, 1/4, 0, 1/5, ... %C A189731 17/6, -7/6, 7/12, -1/4, 1/5, 0, ... %C A189731 The inverse binomial transform of B(0,n) gives B(n,0) and thus it is an eigensequence in the sense that it remains the same (up to a sign) under inverse binomial transform. %C A189731 The bisection of B(0,n) (odd part) gives A175385/A175386, and thus a(2*n+1) = A175385(n+1). %H A189731 Alois P. Heinz, <a href="/A189731/b189731.txt">Table of n, a(n) for n = 0..1000</a> %F A189731 Numerator of (A000204(n) - 1)/n. - _Artur Jasinski_, Oct 21 2022 %p A189731 B:= proc(m, n) option remember; %p A189731 if m=n then 0 %p A189731 elif n=m+1 then 1/n %p A189731 elif n>m then B(m, n-1) +B(m+1, n-1) %p A189731 else B(m-1, n+1) -B(m-1, n) %p A189731 fi %p A189731 end: %p A189731 a:= n-> numer(B(0, n)): %p A189731 seq(a(n), n=0..50); # _Alois P. Heinz_, Apr 29 2011 %t A189731 Rest[Numerator[Abs[CoefficientList[Normal[Series[Log[1 - x^2/(1 + x)], {x, 0, 40}]], x]]]] (* _Vaclav Kotesovec_, Jul 07 2020 *) %t A189731 Table[Numerator[(LucasL[n]-1)/n],{n,1,38}] (* _Artur Jasinski_, Oct 21 2022 *) %Y A189731 Cf. A000204, A242926 (denominators). %Y A189731 Cf. A174341, A177690, A181722. %K A189731 nonn,easy %O A189731 0,4 %A A189731 _Paul Curtz_, Apr 26 2011