cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A189791 Number of ways to place n nonattacking bishops on an 2n x 2n toroidal board.

Original entry on oeis.org

4, 80, 2688, 132864, 8647680, 699678720, 67711795200, 7629571031040, 981168437329920, 141817953779712000, 22760391875493888000, 4016046336733347840000, 772743693378451931136000, 161027573368536472485888000, 36127883615009765477842944000
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n*n!*Sum[Binomial[n,i]^3,{i,0,n}],{n,1,20}]

Formula

a(n)=2^n*n!*Sum[Binomial[n,i]^3,{i,0,n}].
Asymptotic: a(n) ~ 2^(4n+1)*(n-1)!/Pi/sqrt(3) ~ 2^(4n+1)*n^n/exp(n)*sqrt(2/(3*Pi*n)).
Recurrence: a(n) = ((14*n^2-14*n+4)*a(n-1) + 32*(n-1)^3*a(n-2))/n.

A215943 Number of ways to place k non-attacking bishops on an n x n toroidal chessboard, summed over all k >= 0.

Original entry on oeis.org

2, 9, 34, 289, 1546, 19321, 130922, 2169729, 17572114, 364466281, 3405357682, 85143154849, 896324308634, 26309790300249, 306827170866106, 10366719612433921, 132240988644215842, 5064730099043043529, 69974827707903049154, 3000912883089564050721
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 28 2012

Keywords

Comments

a(n) = A002720(n) if n is odd.

Crossrefs

Programs

  • Mathematica
    Table[Sum[If[EvenQ[n],2^k*k!*Sum[Binomial[n/2,i]^2*Binomial[n/2,k-i]^2/Binomial[k,i],{i,0,k}],Binomial[n,k]^2*k!],{k,0,n}],{n,1,25}]

Formula

Recurrence: a(n) = ((12*n^5 - 158*n^4 - (6*(-1)^n-706)*n^3 - (1193-41*(-1)^n)*n^2 - 8*(7*(-1)^n-72)*n - 22*(-1)^n-28)*a(n-2) + (-12*n^6 + 206*n^5 + 2*(7*(-1)^n-691)*n^4 + (4545-137*(-1)^n)*n^3 + (442*(-1)^n-7442)*n^2 + (5194-544*(-1)^n)*n + 198*(-1)^n-698)*(n-2)*a(n-4) + 2*(2*n-1)*(n^2-7*n+10)^2*(n-4)^4*a(n-6))/(2*(n-5)^2*(2*n-5)).
Showing 1-2 of 2 results.