cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189805 Numerators of coefficients in the series expansion of ((2 - m) EllipticK(m) - 2 EllipticE(m))/(Pi * m).

This page as a plain text file.
%I A189805 #11 Jan 17 2018 03:33:30
%S A189805 0,1,3,75,245,6615,22869,1288287,4601025,265939245,969738055,
%T A189805 28510298817,105468168351,3138933581875,11734782467625,
%U A189805 1409850293610375,5313200518272825,642897262711011825,2438232652696561875,74176455589813182375,282762879579212657625
%N A189805 Numerators of coefficients in the series expansion of ((2 - m) EllipticK(m) - 2 EllipticE(m))/(Pi * m).
%C A189805 This combination of elliptic functions appears in the expression for the vector potential generated by a circular loop of current.
%D A189805 J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, third edition, 1999, eq.(5.37).
%H A189805 G. C. Greubel, <a href="/A189805/b189805.txt">Table of n, a(n) for n = 0..830</a>
%F A189805 a(n) is the numerator of the fraction ((2n-1)!!)^2/(2^(2n+1)*(n-1)!*(n+1)!).
%t A189805 Numerator[CoefficientList[Series[((2-m)EllipticK[m]-2EllipticE[m])/m,{m,0,20}]/Pi,m]]
%Y A189805 Cf. A189806.
%K A189805 nonn,frac
%O A189805 0,3
%A A189805 _Dan T. Abell_, Apr 27 2011