cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189814 T(n,k)=Number of right triangles on a (n+1)X(k+1) grid.

Original entry on oeis.org

4, 14, 14, 28, 44, 28, 46, 94, 94, 46, 68, 158, 200, 158, 68, 94, 238, 342, 342, 238, 94, 124, 330, 524, 596, 524, 330, 124, 158, 434, 732, 926, 926, 732, 434, 158, 196, 550, 972, 1308, 1444, 1308, 972, 550, 196, 238, 678, 1236, 1754, 2060, 2060, 1754, 1236, 678
Offset: 1

Views

Author

R. H. Hardin Apr 28 2011

Keywords

Comments

Table starts
...4..14...28...46...68...94...124...158...196...238...284...334...388...446
..14..44...94..158..238..330...434...550...678...818...970..1134..1310..1498
..28..94..200..342..524..732...972..1236..1524..1840..2180..2544..2932..3344
..46.158..342..596..926.1308..1754..2250..2794..3390..4026..4702..5426..6190
..68.238..524..926.1444.2060..2784..3596..4492..5470..6516..7630..8820.10070
..94.330..732.1308.2060.2960..4032..5250..6604..8082..9684.11388.13220.15144
.124.434..972.1754.2784.4032..5520..7224..9128.11218.13500.15938.18568.21328
.158.550.1236.2250.3596.5250..7224..9496.12044.14860.17948.21266.24852.28634
.196.678.1524.2794.4492.6604..9128.12044.15332.18990.23012.27354.32052.37032
.238.818.1840.3390.5470.8082.11218.14860.18990.23596.28678.34190.40166.46522

Examples

			Some solutions for n=3 k=3
..2..3....2..1....0..2....0..1....3..1....1..3....4..2....2..2....1..1....3..2
..1..2....0..3....0..3....0..2....1..3....1..2....2..1....2..1....0..2....1..3
..4..1....3..2....4..2....5..1....5..3....4..3....5..0....5..2....2..2....2..0
		

Crossrefs

Column 1 is -A147973(n+4)
Diagonal is A077435(n+1)

Formula

Empirical for columns
k=1: a(n) = 2*n^2 + 4*n - 2
k=2: a(n) = 6*n^2 + 26*n - 42 for n>3
k=3: a(n) = 12*n^2 + 88*n - 240 for n>8
k=4: a(n) = 20*n^2 + 228*n - 930 for n>15
k=5: a(n) = 30*n^2 + 468*n - 2478 for n>24
k=6: a(n) = 42*n^2 + 886*n - 6080 for n>35
k=7: a(n) = 56*n^2 + 1480*n - 12216 for n>48
k=8: a(n) = 72*n^2 + 2344*n - 23112 for n>63
k=9: a(n) = 90*n^2 + 3516*n - 40434 for n>80
k=10: a(n) = 110*n^2 + 5090*n - 67626 for n>99
k=11: a(n) = 132*n^2 + 7016*n - 105016 for n>120
k=12: a(n) = 156*n^2 + 9564*n - 162094 for n>143
k=13: a(n) = 182*n^2 + 12572*n - 236518 for n>168
k=14: a(n) = 210*n^2 + 16230*n - 337676 for n>195