A189814 T(n,k)=Number of right triangles on a (n+1)X(k+1) grid.
4, 14, 14, 28, 44, 28, 46, 94, 94, 46, 68, 158, 200, 158, 68, 94, 238, 342, 342, 238, 94, 124, 330, 524, 596, 524, 330, 124, 158, 434, 732, 926, 926, 732, 434, 158, 196, 550, 972, 1308, 1444, 1308, 972, 550, 196, 238, 678, 1236, 1754, 2060, 2060, 1754, 1236, 678
Offset: 1
Examples
Some solutions for n=3 k=3 ..2..3....2..1....0..2....0..1....3..1....1..3....4..2....2..2....1..1....3..2 ..1..2....0..3....0..3....0..2....1..3....1..2....2..1....2..1....0..2....1..3 ..4..1....3..2....4..2....5..1....5..3....4..3....5..0....5..2....2..2....2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..10025
Formula
Empirical for columns
k=1: a(n) = 2*n^2 + 4*n - 2
k=2: a(n) = 6*n^2 + 26*n - 42 for n>3
k=3: a(n) = 12*n^2 + 88*n - 240 for n>8
k=4: a(n) = 20*n^2 + 228*n - 930 for n>15
k=5: a(n) = 30*n^2 + 468*n - 2478 for n>24
k=6: a(n) = 42*n^2 + 886*n - 6080 for n>35
k=7: a(n) = 56*n^2 + 1480*n - 12216 for n>48
k=8: a(n) = 72*n^2 + 2344*n - 23112 for n>63
k=9: a(n) = 90*n^2 + 3516*n - 40434 for n>80
k=10: a(n) = 110*n^2 + 5090*n - 67626 for n>99
k=11: a(n) = 132*n^2 + 7016*n - 105016 for n>120
k=12: a(n) = 156*n^2 + 9564*n - 162094 for n>143
k=13: a(n) = 182*n^2 + 12572*n - 236518 for n>168
k=14: a(n) = 210*n^2 + 16230*n - 337676 for n>195
Comments