This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189833 #39 Feb 05 2024 02:27:29 %S A189833 8,9,12,17,24,33,44,57,72,89,108,129,152,177,204,233,264,297,332,369, %T A189833 408,449,492,537,584,633,684,737,792,849,908,969,1032,1097,1164,1233, %U A189833 1304,1377,1452,1529,1608,1689,1772,1857,1944,2033 %N A189833 a(n) = n^2 + 8. %C A189833 From _César Eliud Lozada_, Mar 29 2021: (Start) %C A189833 Numbers a(n) such that sqrt( a(n) + 4*n*sqrt(2) ) = n + 2*sqrt(2). Examples: %C A189833 For n=1: sqrt( 9 + 4*sqrt(2)) = 1 + 2*sqrt(2), %C A189833 For n=2: sqrt(12 + 8*sqrt(2)) = 2 + 2*sqrt(2), %C A189833 For n=3: sqrt(17 + 12*sqrt(2)) = 3 + 2*sqrt(2). (End) %H A189833 G. C. Greubel, <a href="/A189833/b189833.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..955 from Vincenzo Librandi) %H A189833 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A189833 From _G. C. Greubel_, Jan 13 2018: (Start) %F A189833 G.f.: (8 - 15*x + 9*x^2)/(1 - x)^3. %F A189833 E.g.f.: (8 + x + x^2)*exp(x). (End) %F A189833 From _Amiram Eldar_, Jul 04 2020: (Start) %F A189833 Sum_{n>=0} 1/a(n) = (1 + 2*sqrt(2)*Pi*coth(2*sqrt(2)*Pi))/16. %F A189833 Sum_{n>=0} (-1)^n/a(n) = (1 + 2*sqrt(2)*Pi*cosech(2*sqrt(2)*Pi))/16. (End) %F A189833 From _Amiram Eldar_, Feb 05 2024: (Start) %F A189833 Product_{n>=0} (1 - 1/a(n)) = (sqrt(7/2)/2)*sinh(sqrt(7)*Pi)/sinh(2*sqrt(2)*Pi). %F A189833 Product_{n>=0} (1 + 1/a(n)) = (3/(2*sqrt(2)))*sinh(3*Pi)/sinh(2*sqrt(2)*Pi). (End) %t A189833 Table[n^2+8,{n,0,100}] %t A189833 LinearRecurrence[{3,-3,1},{8,9,12},50] (* _Harvey P. Dale_, Jun 21 2022 *) %o A189833 (Magma) [n^2+8: n in [0..50]]; // _Vincenzo Librandi_, Apr 29 2011 %o A189833 (PARI) a(n)=n^2+8 \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A189833 Cf. A002522, A059100, A117950, A087475. %K A189833 nonn,easy %O A189833 0,1 %A A189833 _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 %E A189833 Offset changed from 1 to 0 by _Vincenzo Librandi_, Apr 29 2011