This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189834 #38 Feb 12 2024 02:28:53 %S A189834 9,10,13,18,25,34,45,58,73,90,109,130,153,178,205,234,265,298,333,370, %T A189834 409,450,493,538,585,634,685,738,793,850,909,970,1033,1098,1165,1234, %U A189834 1305,1378,1453,1530,1609,1690,1773,1858,1945 %N A189834 a(n) = n^2 + 9. %H A189834 Vincenzo Librandi, <a href="/A189834/b189834.txt">Table of n, a(n) for n = 0..10000</a> %H A189834 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A189834 a(n) = A154533(n+1). - _R. J. Mathar_, May 16 2011 %F A189834 G.f.: ( -9+17*x-10*x^2 ) / (x-1)^3 . - _R. J. Mathar_, Aug 31 2011 %F A189834 E.g.f.: (9 + x + x^2)*exp(x). - _G. C. Greubel_, Jan 13 2018 %F A189834 From _Amiram Eldar_, Nov 02 2020: (Start) %F A189834 Sum_{n>=0} 1/a(n) = (1 + 3*Pi*coth(3*Pi))/18. %F A189834 Sum_{n>=0} (-1)^n/a(n) = (1 + 3*Pi*cosech(3*Pi))/18. (End) %F A189834 From _Amiram Eldar_, Feb 12 2024: (Start) %F A189834 Product_{n>=0} (1 - 1/a(n)) = (2/3)*sqrt(2)*sinh(2*sqrt(2)*Pi)/sinh(3*Pi). %F A189834 Product_{n>=0} (1 + 1/a(n)) = (sqrt(10)/3)*sinh(sqrt(10)*Pi)/sinh(3*Pi). (End) %t A189834 Table[n^2+9,{n,0,100}] %t A189834 LinearRecurrence[{3,-3,1},{9,10,13},50] (* _Harvey P. Dale_, Aug 21 2020 *) %o A189834 (Magma) [n^2+9: n in [0..50]]; // _Vincenzo Librandi_, Aug 31 2011 %o A189834 (PARI) a(n)=n^2+9 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A189834 Cf. A002522, A059100, A117950, A087475, A154533. %K A189834 nonn,easy %O A189834 0,1 %A A189834 _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011