This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189845 #35 Nov 04 2020 05:57:01 %S A189845 1,1,4,22,150,1200,10922,110844,1236326,14990380,195895202,2740062260, %T A189845 40789039078,643118787708,10696195808162,186993601880756, %U A189845 3425688601198118,65586903427253532,1309155642001921026,27185548811026532692,586164185027289760806 %N A189845 Number of length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(0)=0 and s(k)<=3+max(prefix) for k>=1. %H A189845 Alois P. Heinz, <a href="/A189845/b189845.txt">Table of n, a(n) for n = 0..481</a> (first 67 terms from Vincenzo Librandi) %H A189845 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 17.3.4, pp. 364-366 %F A189845 E.g.f. of sequence starting 1,4,22,.. is exp(x+exp(x)+exp(2*x)/2+exp(3*x)/3-11/6) = exp(x+sum(j=1,3, (exp(j*x)-1)/j)) = 1+4*x+11*x^2+25*x^3+50*x^4+5461/60*x^5 +... %e A189845 For n=0 there is one empty string; for n=1 there is one string [0]; for n=2 there are 4 strings [00], [01], [02], and [03]; %e A189845 for n=3 there are a(3)=22 strings: %e A189845 01: [ 0 0 0 ], %e A189845 02: [ 0 0 1 ], %e A189845 03: [ 0 0 2 ], %e A189845 04: [ 0 0 3 ], %e A189845 05: [ 0 1 0 ], %e A189845 06: [ 0 1 1 ], %e A189845 07: [ 0 1 2 ], %e A189845 08: [ 0 1 3 ], %e A189845 09: [ 0 1 4 ], %e A189845 10: [ 0 2 0 ], %e A189845 11: [ 0 2 1 ], %e A189845 12: [ 0 2 2 ], %e A189845 13: [ 0 2 3 ], %e A189845 14: [ 0 2 4 ], %e A189845 15: [ 0 2 5 ], %e A189845 16: [ 0 3 0 ], %e A189845 17: [ 0 3 1 ], %e A189845 18: [ 0 3 2 ], %e A189845 19: [ 0 3 3 ], %e A189845 20: [ 0 3 4 ], %e A189845 21: [ 0 3 5 ], %e A189845 22: [ 0 3 6 ]. %p A189845 b:= proc(n, m) option remember; `if`(n=0, 1, %p A189845 add(b(n-1, max(m, j)), j=1..m+3)) %p A189845 end: %p A189845 a:= n-> b(n, -2): %p A189845 seq(a(n), n=0..25); # _Alois P. Heinz_, Jun 15 2018 %t A189845 b[n_, m_] := b[n, m] = If[n==0, 1, Sum[b[n-1, Max[m, j]], {j, 1, m+3}]]; %t A189845 a[n_] := b[n, -2]; %t A189845 a /@ Range[0, 25] (* _Jean-François Alcover_, Nov 03 2020, after _Alois P. Heinz_ *) %o A189845 (PARI) x='x+O('x^66); %o A189845 egf=exp(x+sum(j=1,3, (exp(j*x)-1)/j)); /* (off by one!) */ %o A189845 concat([1], Vec(serlaplace(egf))) %Y A189845 Cf. A080337, A000110, A306027. %Y A189845 Column k=3 of A305962. %K A189845 nonn %O A189845 0,3 %A A189845 _Joerg Arndt_, Apr 29 2011