This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189888 #14 Jul 13 2025 11:05:15 %S A189888 11,19,43,97,163,191,223,457,877,1049,1307,1987,2029,2129,4217,6599, %T A189888 9967,10357,18233,66343,74573,95911,99719,186551,196337,211219,262469, %U A189888 277301,416573,603487,994549,1403137,4117441,4805761,4895789,5823067,5842813,7704409 %N A189888 a(n) = A139602(m) such that for any k>m, A139602(k) > A139602(m). %C A189888 Dickson's conjecture implies that this sequence is infinite. - _Charles R Greathouse IV_, Mar 22 2011 %H A189888 Lei Zhou, <a href="https://csic.som.emory.edu/~lzhou/blogs/?p=206">List of prime pair a(n) +/- 6*k</a>. %e A189888 For n=1, a(n)=A139602(1)=11; %e A189888 A139602(3)=61 is skipped since A139602(4)=43 < A139602(3), thus a(3)=A139602(4)=43; %e A189888 For the same reason, A139602(8) and A139602(9) are skipped so that a(7)=A139602(10)=223. %t A189888 count=0; imin=0; cstop=65; pn=4; While[count<cstop, pn++; np=Prime[pn]; i=0; cp1=np; cp2=np; While[i++; diff=6*i; cp1=np-diff; cp2=np+diff; !(PrimeQ[cp1] && PrimeQ[cp2])]; Print[np]; If[i>imin,imin=i; count++]] %Y A189888 Cf. A139602. %K A189888 nonn %O A189888 1,1 %A A189888 _Lei Zhou_, Apr 30 2011