cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189893 Recurrence sequence derived from the digits of the square root of 5 after its decimal point.

Original entry on oeis.org

0, 4, 10, 65, 173, 22, 96, 15, 48, 78, 13, 201, 487, 594, 2719, 5146, 8719, 11530, 15308, 76411, 76016, 42220, 67129, 45349, 170266, 255576, 457846, 865810, 1131083, 8045547, 7669757
Offset: 0

Views

Author

Nathaniel Johnston, Apr 30 2011

Keywords

Examples

			sqrt(5) = 2.2360679774997896964091736687...
So for example, with a(0) = 0, a(1) = 4 because the 4th digit after the decimal point is 0; a(2) = 10 because the 10th digit after the decimal point is 4 and so on.
		

Crossrefs

Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A098326 for sqrt(2), A120482 for sqrt(3), A098327 for sqrt(e), A098328 for 2^(1/3).

Programs

  • Maple
    with(StringTools): Digits:=10000: G:=convert(evalf(sqrt(5)),string): a[0]:=0: for n from 1 to 17 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od:

Formula

a(0) = 0; for i >= 0, a(i+1) = position of first occurrence of a(i) in decimal places of sqrt(5).