cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A189895 T(n,k) = Number of isosceles right triangles on a (n+1) X (k+1) grid.

Original entry on oeis.org

4, 10, 10, 16, 28, 16, 22, 50, 50, 22, 28, 74, 96, 74, 28, 34, 98, 150, 150, 98, 34, 40, 122, 208, 244, 208, 122, 40, 46, 146, 268, 350, 350, 268, 146, 46, 52, 170, 328, 464, 516, 464, 328, 170, 52, 58, 194, 388, 582, 700, 700, 582, 388, 194, 58, 64, 218, 448, 702, 896, 968
Offset: 1

Views

Author

R. H. Hardin, Apr 30 2011

Keywords

Comments

Table starts
..4..10..16..22...28...34...40...46...52...58...64...70...76....82....88....94
.10..28..50..74...98..122..146..170..194..218..242..266..290...314...338...362
.16..50..96.150..208..268..328..388..448..508..568..628..688...748...808...868
.22..74.150.244..350..464..582..702..822..942.1062.1182.1302..1422..1542..1662
.28..98.208.350..516..700..896.1100.1308.1518.1728.1938.2148..2358..2568..2778
.34.122.268.464..700..968.1260.1570.1892.2222.2556.2892.3228..3564..3900..4236
.40.146.328.582..896.1260.1664.2100.2560.3038.3528.4026.4528..5032..5536..6040
.46.170.388.702.1100.1570.2100.2680.3300.3952.4628.5322.6028..6742..7460..8180
.52.194.448.822.1308.1892.2560.3300.4100.4950.5840.6762.7708..8672..9648.10632
.58.218.508.942.1518.2222.3038.3952.4950.6020.7150.8330.9550.10802.12078.13372

Examples

			Some solutions for n=7 k=5
..3..5....1..1....5..4....6..4....5..1....4..4....3..2....2..5....4..3....2..3
..1..4....2..4....1..3....3..5....4..3....1..1....4..1....0..1....2..3....0..0
..4..3....4..0....6..0....5..1....7..2....7..1....4..3....6..3....4..1....5..1
		

Crossrefs

Diagonal is A187452(n+1).
(2n-1,n) diagonal is A189894.

Formula

Empirical for column k: a(n) = k*(k+1)*(k+2)*n + b(k) for n>2*k-2.
k=1: a(n) = 6*n - 2
k=2: a(n) = 24*n - 22 for n>2
k=3: a(n) = 60*n - 92 for n>4
k=4: a(n) = 120*n - 258 for n>6
k=5: a(n) = 210*n - 582 for n>8
k=6: a(n) = 336*n - 1140 for n>10
k=7: a(n) = 504*n - 2024 for n>12
k=8: a(n) = 720*n - 3340 for n>14
k=9: a(n) = 990*n - 5210 for n>16
k=10: a(n) = 1320*n - 7770 for n>18
k=11: a(n) = 1716*n - 11172 for n>20
k=12: a(n) = 2184*n - 15582 for n>22
k=13: a(n) = 2730*n - 21182 for n>24
k=14: a(n) = 3360*n - 28168 for n>26
Showing 1-1 of 1 results.