A189911 Row sums of the extended Catalan triangle A189231.
1, 2, 4, 9, 18, 40, 80, 175, 350, 756, 1512, 3234, 6468, 13728, 27456, 57915, 115830, 243100, 486200, 1016158, 2032316, 4232592, 8465184, 17577014, 35154028, 72804200, 145608400, 300874500, 601749000, 1240940160, 2481880320, 5109183315, 10218366630
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Peter Luschny, The lost Catalan numbers.
Programs
-
Maple
A189911 := proc(n) local a,b,d; if n = 0 then 1 else a := GAMMA(n-floor(n/2)); b := GAMMA(floor(n/2+3/2)); d := GAMMA(floor(n/2+1))^2; GAMMA(n+1)*(a*b+d)/(a*b*d) fi end: seq(A189911(n),n=0..32); A189911 := proc(n) h:=irem(n,2); g:=iquo(n,2); (g+h+1)*binomial(2*g+h,g+h) end; # Peter Luschny, Oct 24 2013
-
Mathematica
a[n_] := Module[{q, r}, {q, r} = QuotientRemainder[n, 2]; (q+r+1)*Pochhammer[q+1, q+r]/(q+r)!]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jan 09 2014 *)
-
Sage
def A189911(): r, n = 1, 1 while True: yield r h = n//2 r *= 2 if is_even(n) else (h+2)*(2*h+1)/(h+1)^2 n += 1 a = A189911(); [next(a) for i in range(16)] # Peter Luschny, Oct 24 2013
Formula
Let a = Gamma(n-floor(n/2)), b = Gamma(floor(n/2+3/2)), d = Gamma( floor(n/2+1))^2, c = Gamma(n+1). Then a(n) = c*(a*b+d)/(a*b*d).
From Peter Luschny, Oct 24 2013 : (Start)
E.g.f.: (x+1)*(BesselI(0, 2*x)+BesselI(1, 2*x)).
O.g.f.: I*(2*x^2-1)/(2*sqrt(2*x+1)*x*(2*x-1)^(3/2))-1/(2*x).
Recurrence: a(0) = 1; a(n) = a(n-1)*2 if n is even else ([n/2]+2)*(2*[n/2]+1)/([n/2]+1)^2. ([.] the floor brackets.)
a(2*n) = (n+1)*C(2*n, n) (A037965);
a(2*n+1) = (n+2)*C(2*n+1, n+1) (A097070). (End)
Sum_{n>=0} 1/a(n) = 4*Pi/sqrt(3) - Pi^2/3 - 2. - Amiram Eldar, Aug 20 2022
D-finite with recurrence: (n-2)*(n+1)^2*a(n) - (2*(n-2)^2+2*n-12)*a(n-1) - 4*(n+2)*(n-1)^2*a(n-2) = 0. - Georg Fischer, Nov 25 2022