This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189913 #16 Sep 08 2022 08:45:56 %S A189913 1,1,1,1,2,1,1,3,3,3,1,4,6,12,2,1,5,10,30,10,10,1,6,15,60,30,60,5,1,7, %T A189913 21,105,70,210,35,35,1,8,28,168,140,560,140,280,14,1,9,36,252,252, %U A189913 1260,420,1260,126,126,1,10,45,360,420,2520,1050,4200,630,1260,42 %N A189913 Triangle read by rows: T(n,k) = binomial(n, k) * k! / (floor(k/2)! * floor((k+2)/2)!). %C A189913 The triangle may be regarded a generalization of the triangle A097610: %C A189913 A097610(n,k) = binomial(n,k)*(2*k)$/(k+1); %C A189913 T(n,k) = binomial(n,k)*(k)$/(floor(k/2)+1). %C A189913 Here n$ denotes the swinging factorial A056040(n). As A097610 is a decomposition of the Motzkin numbers A001006, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected. %C A189913 T(n,n) = A057977(n) which can be seen as extended Catalan numbers. %H A189913 G. C. Greubel, <a href="/A189913/b189913.txt">Table of n, a(n) for the first 100 rows, flattened</a> %H A189913 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostCatalanNumbers">The lost Catalan numbers.</a> %F A189913 From _R. J. Mathar_, Jun 07 2011: (Start) %F A189913 T(n,1) = n. %F A189913 T(n,2) = A000217(n-1). %F A189913 T(n,3) = A027480(n-2). %F A189913 T(n,4) = A034827(n). (End) %e A189913 [0] 1 %e A189913 [1] 1, 1 %e A189913 [2] 1, 2, 1 %e A189913 [3] 1, 3, 3, 3 %e A189913 [4] 1, 4, 6, 12, 2 %e A189913 [5] 1, 5, 10, 30, 10, 10 %e A189913 [6] 1, 6, 15, 60, 30, 60, 5 %e A189913 [7] 1, 7, 21, 105, 70, 210, 35, 35 %p A189913 A189913 := (n,k) -> binomial(n,k)*(k!/iquo(k,2)!^2)/(iquo(k,2)+1): %p A189913 seq(print(seq(A189913(n,k),k=0..n)),n=0..7); %t A189913 T[n_, k_] := Binomial[n, k]*k!/((Floor[k/2])!*(Floor[(k + 2)/2])!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* _G. C. Greubel_, Jan 13 2018 *) %o A189913 (PARI) {T(n,k) = binomial(n,k)*k!/((floor(k/2))!*(floor((k+2)/2))!) }; %o A189913 for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Jan 13 2018 %o A189913 (Magma) /* As triangle */ [[Binomial(n,k)*Factorial(k)/(Factorial(Floor(k/2))*Factorial(Floor((k + 2)/2))): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Jan 13 2018 %Y A189913 Row sums are A189912. %Y A189913 Cf. A097610, A057977, A001006. %K A189913 nonn,tabl,easy %O A189913 0,5 %A A189913 _Peter Luschny_, May 24 2011