cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189914 a(n) is 2^phi(n) times the least common multiple of the proper divisors of n.

Original entry on oeis.org

1, 2, 2, 4, 8, 16, 24, 64, 64, 192, 160, 1024, 192, 4096, 896, 3840, 2048, 65536, 1152, 262144, 5120, 86016, 22528, 4194304, 6144, 5242880, 106496, 2359296, 114688, 268435456, 7680, 1073741824, 1048576, 34603008, 2228224, 587202560, 147456, 68719476736, 9961472
Offset: 0

Views

Author

Peter Luschny, Jun 22 2011

Keywords

Comments

The sequence relates arithmetic properties of roots of unity in the complex plane with number theoretic properties of integers. This connection often appears as intriguing identities showing products of specific values of the sine function or the gamma function reducing to simple values (see for instance the first formula below).

Programs

  • Maple
    A189914 := n -> 2^numtheory[phi](n)*ilcm(op(numtheory[divisors](n) minus {1,n})): seq(A189914(n), n=0..35);
  • Mathematica
    a[n_] := 2^EulerPhi[n] * LCM @@ Most[Divisors[n]]; a[0] = 1; a[1] = 2; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Jan 22 2014 *)
  • PARI
    a(n)=if(n,my(p=n); if(isprime(n)||(ispower(n, , &p)&&isprime(p)), n/p, n)<Charles R Greathouse IV, Jun 24 2011

Formula

Let R(n) = {k | gcd(n,k) = 1, k = 1..floor(n/2)} and b(n) = product_{R(n)} sin(Pi*k/n) then a(n) = n / b(n)^2 for n > 1.
a(n) = A066781(n)*A048671(n).