This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189924 #20 Sep 08 2022 08:45:56 %S A189924 1,2,5,15,49,140,-64,-8540,-146124,-2124936,-30374136,-445116672, %T A189924 -6793958016,-108691150464,-1826654613120,-32257962443520, %U A189924 -598196854045440,-11635261535301120,-237044583523514880,-5050811716879104000 %N A189924 a(n) = abs(Stirling1(n+2,2)) - abs(Stirling1(n+2,3)). %C A189924 This is the fourth (k=3) column sequence in triangle A094645 without leading zeros. %H A189924 G. C. Greubel, <a href="/A189924/b189924.txt">Table of n, a(n) for n = 0..445</a> %F A189924 a(n) = abs(Stirling1(n+2,2)) - abs(Stirling1(n+2,3)), with the unsigned Stirling1 numbers abs(Stirling1(n,k)) = A132393(n,k). %F A189924 E.g.f.: (1/2)*(2-log(1-x)^2)/(1-x)^2 (from differentiating three times (1-x)*((-log(1-x))^3)/3!). %t A189924 Table[Abs[StirlingS1[n+2,2]]-Abs[StirlingS1[n+2,3]],{n,0,20}] (* _Harvey P. Dale_, May 21 2015 *) %o A189924 (PARI) a(n)=abs(stirling(n+2,2))-abs(stirling(n+2,3)) \\ _Charles R Greathouse IV_, Jun 27 2011 %o A189924 (Magma) [Abs(StirlingFirst(n+2,2)) - Abs(StirlingFirst(n+2,3)): n in [0..30]]; // _G. C. Greubel_, Jan 13 2018 %Y A189924 Cf. A081047 (column k=2). %K A189924 sign,easy %O A189924 0,2 %A A189924 _Wolfdieter Lang_, Jun 21 2011