This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189971 #15 Dec 26 2023 10:02:50 %S A189971 2,3,6,3,1,2,15,2,3,6,1,7,1,4,2,3,1,4,2,1,1,1,2,1,20,17,3,1,2,3,1,1,3, %T A189971 1,4,9,73,1,37,192,3,1,1,1,1,5,1,21,1,6,7,1,3,3,1,8,2,2,1,1,8,1,2,1,1, %U A189971 8,1,2,1,20,2,16,3,19,2,1,3,7,1,1,2,1,2,3,1,1,1,2,9,32,1,1,10,5,1,7,5,1,1,1 %N A189971 Continued fraction of (1 + x + sqrt(14 + 10*x))/4, where x=sqrt(5). %C A189971 Equivalent to the periodic continued fraction [r,1,r,1,...] where r=(1+sqrt(5))/2, the golden ratio. For geometric interpretations of both continued fractions, see A189970 and A188635. %H A189971 G. C. Greubel, <a href="/A189971/b189971.txt">Table of n, a(n) for n = 1..10000</a> %t A189971 (See A189970.) %t A189971 ContinuedFraction[(1+Sqrt[5]+Sqrt[14+10Sqrt[5]])/4,120] (* _Harvey P. Dale_, Jul 31 2013 *) %o A189971 (PARI) contfrac((1+sqrt(5)+sqrt(14+10*sqrt(5)))/4) \\ _G. C. Greubel_, Jan 12 2018 %o A189971 (Magma) ContinuedFraction( (1 + Sqrt(5) + Sqrt(14 + 10*Sqrt(5)) )/4 ); // _G. C. Greubel_, Jan 12 2018 %Y A189971 Cf. A001622, A189970, A188635, A190157, A190158. %K A189971 nonn,cofr %O A189971 1,1 %A A189971 _Clark Kimberling_, May 05 2011