This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189975 #35 Apr 22 2025 04:33:07 %S A189975 120,168,264,270,280,312,378,408,440,456,520,552,594,616,680,696,702, %T A189975 728,744,750,760,888,918,920,945,952,984,1026,1032,1064,1128,1144, %U A189975 1160,1240,1242,1272,1288,1416,1464,1480,1485,1496,1566,1608,1624,1640,1672 %N A189975 Numbers with prime factorization pqr^3 for distinct p, q, r. %H A189975 T. D. Noe, <a href="/A189975/b189975.txt">Table of n, a(n) for n = 1..1000</a> %H A189975 Will Nicholes, <a href="https://willnicholes.com/2010/06/06/list-of-prime-signatures/">List of prime signatures</a> %H A189975 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %t A189975 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,3}; Select[Range[2000],f] %o A189975 (PARI) list(lim)=my(v=List(),t);forprime(p=2,(lim\6)^(1/3),forprime(q=2,sqrt(lim\p^3),if(p==q,next);t=p^3*q;forprime(r=q+1,lim\t,if(p==r,next);listput(v,t*r))));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 19 2011 %o A189975 (Python) %o A189975 from math import isqrt %o A189975 from sympy import primepi, primerange, integer_nthroot %o A189975 def A189975(n): %o A189975 def bisection(f,kmin=0,kmax=1): %o A189975 while f(kmax) > kmax: kmax <<= 1 %o A189975 kmin = kmax >> 1 %o A189975 while kmax-kmin > 1: %o A189975 kmid = kmax+kmin>>1 %o A189975 if f(kmid) <= kmid: %o A189975 kmax = kmid %o A189975 else: %o A189975 kmin = kmid %o A189975 return kmax %o A189975 def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**3)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,3)[0]+1))+sum(primepi(x//p**4) for p in primerange(integer_nthroot(x,4)[0]+1))-primepi(integer_nthroot(x,5)[0]) %o A189975 return bisection(f,n,n) # _Chai Wah Wu_, Mar 27 2025 %Y A189975 Cf. A030634, A050997, A178739. %K A189975 nonn %O A189975 1,1 %A A189975 _Vladimir Joseph Stephan Orlovsky_, May 03 2011