This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189978 #20 May 28 2021 20:53:46 %S A189978 0,1,5,11,22,35,53,70,100,126,159,188,237,276,328,372,439,491,564,623, %T A189978 706,775,859,931,1049,1129,1231,1323,1448,1540,1674,1772,1928,2041, %U A189978 2183,2301,2483,2602,2758,2898,3095 %N A189978 Number of isosceles triangles, distinct up to congruence, on an n X n grid (or geoboard). %H A189978 Alec Jones, <a href="/A189978/a189978.jpg">Examples for n = 1 to 5</a> %H A189978 Alec Jones, <a href="/A189978/a189978.txt">Example for n = 24</a> %e A189978 For n=3 the five isosceles triangles are: %e A189978 **. *.* .*. ..* *.. %e A189978 *.. ... *.. *.. ..* %e A189978 ... *.. .*. ..* .*. %p A189978 Triangles:=proc(n) local TriangleSet,i,j,k,l,A,B,C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet),sort([sqrt(A),sqrt(B),sqrt(C)])}: fi: od: od: od: od: return(TriangleSet); end: %p A189978 IsIsoscelesTriangle:=proc(T) if T[1]=T[2] or T[1]=T[3] or T[2]=T[3] then true else false fi: end: %p A189978 a:=proc(n) local TriangleSet,IsoscelesTriangleSet,i; %p A189978 TriangleSet:=Triangles(n): IsoscelesTriangleSet:={}: for i from 1 to nops(TriangleSet) do if IsIsoscelesTriangle(TriangleSet[i]) then IsoscelesTriangleSet:={op(IsoscelesTriangleSet),TriangleSet[i]} fi: od: return(nops(IsoscelesTriangleSet)); end: %Y A189978 Cf. A028419, A186434. %K A189978 nonn,more %O A189978 1,3 %A A189978 _Martin Renner_, May 03 2011 %E A189978 a(21)-a(40) from _Martin Renner_, May 08 2011