cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189979 Number of right triangles, distinct up to congruence, on an n X n grid (or geoboard).

Original entry on oeis.org

0, 1, 4, 9, 17, 26, 39, 53, 71, 91, 114, 136, 169, 197, 231, 267, 310, 346, 397, 437, 492, 548, 606, 654, 729, 791, 858, 928, 1007, 1071, 1173, 1241, 1333, 1423, 1509, 1600, 1728, 1814, 1912, 2015, 2144
Offset: 1

Views

Author

Martin Renner, May 03 2011

Keywords

Examples

			For n=3 the four right triangles are:
**.  *.*  *.*  .*.
*..  *..  ...  *..
...  ...  *..  .*.
		

Crossrefs

Programs

  • Maple
    Triangles:=proc(n) local TriangleSet,i,j,k,l,A,B,C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet),sort([sqrt(A),sqrt(B),sqrt(C)])}: fi: od: od: od: od: return(TriangleSet); end:
    IsRectangularTriangle:=proc(T) if T[1]^2+T[2]^2=T[3]^2 or T[1]^2+T[3]^2=T[2]^2 or T[2]^2+T[3]^2=T[1]^2 then true else false fi: end:
    a:=proc(n) local TriangleSet,RectangularTriangleSet,i; TriangleSet:=Triangles(n): RectangularTriangleSet:={}: for i from 1 to nops(TriangleSet) do if IsRectangularTriangle(TriangleSet[i]) then RectangularTriangleSet:={op(RectangularTriangleSet),TriangleSet[i]} fi: od: return(nops(RectangularTriangleSet)); end:

Extensions

a(21) through a(40) from Martin Renner, May 08 2011