This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189987 #34 Feb 22 2025 09:57:18 %S A189987 192,320,448,704,832,1088,1216,1458,1472,1856,1984,2368,2624,2752, %T A189987 3008,3392,3645,3776,3904,4288,4544,4672,5056,5103,5312,5696,6208, %U A189987 6464,6592,6848,6976,7232,8019,8128,8384,8768,8896,9477,9536,9664,10048,10432,10688 %N A189987 Numbers with prime factorization p*q^6. %H A189987 T. D. Noe, <a href="/A189987/b189987.txt">Table of n, a(n) for n = 1..1000</a> %H A189987 Will Nicholes, <a href="https://web.archive.org/web/20220628070358/http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a> %H A189987 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %t A189987 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,6}; Select[Range[30000],f] %o A189987 (PARI) list(lim)=my(v=List(),t);forprime(p=2, (lim\2)^(1/6), t=p^6;forprime(q=2, lim\t, if(p==q, next);listput(v,t*q))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 20 2011 %o A189987 (Python) %o A189987 from sympy import primepi, primerange, integer_nthroot %o A189987 def A189987(n): %o A189987 def bisection(f,kmin=0,kmax=1): %o A189987 while f(kmax) > kmax: kmax <<= 1 %o A189987 kmin = kmax >> 1 %o A189987 while kmax-kmin > 1: %o A189987 kmid = kmax+kmin>>1 %o A189987 if f(kmid) <= kmid: %o A189987 kmax = kmid %o A189987 else: %o A189987 kmin = kmid %o A189987 return kmax %o A189987 def f(x): return n+x-sum(primepi(x//p**6) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,7)[0]) %o A189987 return bisection(f,n,n) # _Chai Wah Wu_, Feb 22 2025 %Y A189987 Cf. A030632, A092759. %K A189987 nonn %O A189987 1,1 %A A189987 _Vladimir Joseph Stephan Orlovsky_, May 03 2011