This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A189991 #36 Mar 28 2025 03:27:34 %S A189991 1296,10000,38416,50625,194481,234256,456976,1185921,1336336,1500625, %T A189991 2085136,2313441,4477456,6765201,9150625,10556001,11316496,14776336, %U A189991 17850625,22667121,29986576,35153041,45212176,52200625,54700816,57289761,68574961,74805201 %N A189991 Numbers with prime factorization p^4*q^4. %C A189991 The primes p and q must be distinct, or else the product has factorization p^8 (or q^8, for that matter). %H A189991 T. D. Noe, <a href="/A189991/b189991.txt">Table of n, a(n) for n = 1..1000</a> %H A189991 Will Nicholes, <a href="https://willnicholes.com/2010/06/06/list-of-prime-signatures">List of Prime Signatures</a> %H A189991 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %F A189991 Sum_{n>=1} 1/a(n) = (P(4)^2 - P(8))/2 = (A085964^2 - A085968)/2 = 0.000933..., where P is the prime zeta function. - _Amiram Eldar_, Jul 06 2020 %F A189991 a(n) = A006881(n)^4 = A085986(n)^2. - _Chai Wah Wu_, Mar 27 2025 %t A189991 lst = {}; Do[If[Sort[Last/@FactorInteger[n]] == {4, 4}, Print[n]; AppendTo[lst, n]], {n,55000000}]; lst (* Orlovsky *) %t A189991 lim = 10^8; pMax = PrimePi[(lim/16)^(1/4)]; Select[Union[Flatten[Table[Prime[i]^4 Prime[j]^4, {i, 2, pMax}, {j, i - 1}]]], # <= lim &] (* _Alonso del Arte_, May 03 2011 *) %t A189991 With[{nn=30},Take[Union[Times@@@(Subsets[Prime[Range[nn]],{2}]^4)],nn]] (* _Harvey P. Dale_, Mar 05 2015 *) %o A189991 (PARI) list(lim)=my(v=List(),t);forprime(p=2, lim^(1/8), t=p^4;forprime(q=p+1, (lim\t)^(1/4), listput(v,t*q^4))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 24 2011 %o A189991 (Python) %o A189991 from math import isqrt %o A189991 from sympy import primepi, integer_nthroot, primerange %o A189991 def A189991(n): %o A189991 def bisection(f,kmin=0,kmax=1): %o A189991 while f(kmax) > kmax: kmax <<= 1 %o A189991 kmin = kmax >> 1 %o A189991 while kmax-kmin > 1: %o A189991 kmid = kmax+kmin>>1 %o A189991 if f(kmid) <= kmid: %o A189991 kmax = kmid %o A189991 else: %o A189991 kmin = kmid %o A189991 return kmax %o A189991 def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,4)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1))) %o A189991 return bisection(f,n,n) # _Chai Wah Wu_, Feb 22 2025 %Y A189991 Cf. A006881, A137488, A179671, A189990. %Y A189991 Cf. A085964, A085968, A085986. %K A189991 nonn %O A189991 1,1 %A A189991 _Vladimir Joseph Stephan Orlovsky_, May 03 2011