cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189996 Bott periodicity: the homotopy groups of the stable orthogonal group are periodic with period 8 and repeat like [2, 2, 1, 0, 1, 1, 1, 0].

This page as a plain text file.
%I A189996 #24 Feb 16 2025 08:33:14
%S A189996 2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,
%T A189996 1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,
%U A189996 1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0
%N A189996 Bott periodicity: the homotopy groups of the stable orthogonal group are periodic with period 8 and repeat like [2, 2, 1, 0, 1, 1, 1, 0].
%C A189996 Bott proved that the n-th homotopy group of the stable orthogonal group is Z/(a(n)*Z), where Z is the integers and Z/(0*Z), Z/(1*Z), Z/(2*Z) are the cyclic groups of order infinity, 1, 2, respectively. For details, see the Wikipedia orthogonal group link.
%C A189996 For references and additional links, see the Wikipedia Bott periodicity link.
%H A189996 Colin Barker, <a href="/A189996/b189996.txt">Table of n, a(n) for n = 0..1000</a>
%H A189996 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BottPeriodicityTheorem.html">Bott Periodicity Theorem</a>
%H A189996 Wikipedia, <a href="http://en.wikipedia.org/wiki/Bott_periodicity">Bott periodicity</a>
%H A189996 Wikipedia, <a href="http://en.wikipedia.org/wiki/Orthogonal_group#Homotopy_groups">Orthogonal group</a>
%H A189996 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,1).
%F A189996 a(n) = 2, 2, 1, 0, 1, 1, 1, 0 if n == 0, 1, 2, 3, 4, 5, 6, 7 (mod 8), respectively.
%F A189996 From _Colin Barker_, Nov 02 2019: (Start)
%F A189996 G.f.: (2 + 2*x + x^2 + x^4 + x^5 + x^6) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)).
%F A189996 a(n) = a(n-8) for n>7.
%F A189996 (End)
%t A189996 LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{2, 2, 1, 0, 1, 1, 1, 0},104] (* _Ray Chandler_, Aug 25 2015 *)
%t A189996 PadRight[{},120,{2,2,1,0,1,1,1,0}] (* _Harvey P. Dale_, Jun 13 2017 *)
%o A189996 (PARI) a(n)=[2, 2, 1, 0, 1, 1, 1, 0][n%8+1] \\ _Charles R Greathouse IV_, Jul 13 2016
%o A189996 (PARI) Vec((2 + 2*x + x^2 + x^4 + x^5 + x^6) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)) + O(x^90)) \\ _Colin Barker_, Nov 02 2019
%Y A189996 Cf. A048648.
%K A189996 nonn,easy
%O A189996 0,1
%A A189996 _Jonathan Sondow_, Jun 17 2011