cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190021 Number of acute triangles, distinct up to congruence, on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 2, 8, 23, 51, 101, 179, 295, 460, 688, 988, 1382, 1876, 2495, 3258, 4191, 5298, 6613, 8166, 9973, 12065, 14472, 17208, 20341, 23873, 27838, 32282, 37238, 42734, 48840, 55573, 62973, 71067, 79934, 89640, 100172, 111613, 123959, 137336, 151842
Offset: 1

Views

Author

Martin Renner, May 04 2011

Keywords

Examples

			For n = 3 the two acute triangles are:
*..   .*.
..*   *..
*..   ..*
		

Crossrefs

Programs

  • Maple
    Triangles:=proc(n) local TriangleSet, i, j, k, l, A, B, C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet), sort([sqrt(A), sqrt(B), sqrt(C)])}: fi: od: od: od: od: return(TriangleSet); end:
    IsAcuteTriangle:=proc(T) if T[1]^2+T[2]^2>T[3]^2 and T[1]^2+T[3]^2>T[2]^2 and T[2]^2+T[3]^2>T[1]^2 then true else false fi: end:
    a:=proc(n) local TriangleSet,AcuteTriangleSet,i; TriangleSet:=Triangles(n): AcuteTriangleSet:={}: for i from 1 to nops(TriangleSet) do if IsAcuteTriangle(TriangleSet[i]) then AcuteTriangleSet:={op(AcuteTriangleSet),TriangleSet[i]} fi: od: return(nops(AcuteTriangleSet)); end:

Formula

a(n) = A028419(n) - A189979(n) - A190022(n).

Extensions

a(21)-a(40) from Martin Renner, May 08 2011