A190022 Number of obtuse triangles, distinct up to congruence, on an n X n grid (or geoboard).
0, 0, 2, 12, 39, 95, 193, 355, 597, 943, 1426, 2071, 2904, 3977, 5306, 6956, 8963, 11370, 14225, 17587, 21515, 26053, 31310, 37282, 44061, 51785, 60436, 70127, 80939, 92952, 106267, 120982, 137124, 154841, 174225, 195366, 218394, 243457, 270505, 299749, 331441
Offset: 1
Keywords
Examples
For n = 3 the two obtuse triangles are: *.. *.. *.. *.. .*. ..*
Links
- Eric Weisstein's World of Mathematics, Geoboard.
- Eric Weisstein's World of Mathematics, Obtuse Triangle.
Programs
-
Maple
Triangles:=proc(n) local TriangleSet, i, j, k, l, A, B, C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet), sort([sqrt(A), sqrt(B), sqrt(C)])}: fi: od: od: od: od: return(TriangleSet); end: IsObtuseTriangle:=proc(T) if T[1]^2+T[2]^2
Extensions
a(21)-a(40) from Martin Renner, May 08 2011