cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190022 Number of obtuse triangles, distinct up to congruence, on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 2, 12, 39, 95, 193, 355, 597, 943, 1426, 2071, 2904, 3977, 5306, 6956, 8963, 11370, 14225, 17587, 21515, 26053, 31310, 37282, 44061, 51785, 60436, 70127, 80939, 92952, 106267, 120982, 137124, 154841, 174225, 195366, 218394, 243457, 270505, 299749, 331441
Offset: 1

Views

Author

Martin Renner, May 04 2011

Keywords

Examples

			For n = 3 the two obtuse triangles are:
*..   *..
*..   *..
.*.   ..*
		

Crossrefs

Programs

  • Maple
    Triangles:=proc(n) local TriangleSet, i, j, k, l, A, B, C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet), sort([sqrt(A), sqrt(B), sqrt(C)])}: fi: od: od: od: od: return(TriangleSet); end:
    IsObtuseTriangle:=proc(T) if T[1]^2+T[2]^2
    				

Formula

a(n) = A028419(n) - A190021(n) - A189979(n).

Extensions

a(21)-a(40) from Martin Renner, May 08 2011