A190035 Number of nondecreasing arrangements of n+2 numbers in 0..3 with the last equal to 3 and each after the second equal to the sum of one or two of the preceding three.
5, 7, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230, 234, 238
Offset: 1
Examples
All solutions for n=4: ..1....1....0....3....2....0....1....0....1....1....0....1....1....1 ..1....1....3....3....3....1....1....1....2....1....1....2....3....1 ..2....1....3....3....3....1....2....1....3....1....1....2....3....1 ..2....1....3....3....3....2....3....2....3....2....1....3....3....2 ..3....2....3....3....3....2....3....3....3....3....2....3....3....2 ..3....3....3....3....3....3....3....3....3....3....3....3....3....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n) = 4*n - 2 for n>2.
Conjectures from Colin Barker, May 03 2018: (Start)
G.f.: x*(5 - 3*x + x^2 + x^3) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>4.
(End)
Comments