cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A190034 Number of nondecreasing arrangements of n+2 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding three.

Original entry on oeis.org

2, 6, 10, 27, 33, 107, 80, 349, 264, 735, 357, 2809, 736, 2565, 3262, 10997, 1258, 17921, 2313, 34880, 12649, 17448, 4348, 211004, 15839, 42957, 49372, 169716, 10846, 430082, 11210, 1004561, 85127, 101536, 102904, 2715826, 20183, 190249, 208100
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Diagonal of A190041

Examples

			All solutions for n=3
..3....0....1....1....1....1....0....1....2....1
..3....3....3....1....1....1....1....2....3....2
..3....3....3....1....2....2....1....2....3....3
..3....3....3....2....2....3....2....3....3....3
..3....3....3....3....3....3....3....3....3....3
		

A190035 Number of nondecreasing arrangements of n+2 numbers in 0..3 with the last equal to 3 and each after the second equal to the sum of one or two of the preceding three.

Original entry on oeis.org

5, 7, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230, 234, 238
Offset: 1

Views

Author

R. H. Hardin, May 04 2011

Keywords

Comments

Column 3 of A190041.

Examples

			All solutions for n=4:
..1....1....0....3....2....0....1....0....1....1....0....1....1....1
..1....1....3....3....3....1....1....1....2....1....1....2....3....1
..2....1....3....3....3....1....2....1....3....1....1....2....3....1
..2....1....3....3....3....2....3....2....3....2....1....3....3....2
..3....2....3....3....3....2....3....3....3....3....2....3....3....2
..3....3....3....3....3....3....3....3....3....3....3....3....3....3
		

Crossrefs

Formula

Empirical: a(n) = 4*n - 2 for n>2.
Conjectures from Colin Barker, May 03 2018: (Start)
G.f.: x*(5 - 3*x + x^2 + x^3) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>4.
(End)

A190036 Number of nondecreasing arrangements of n+2 numbers in 0..4 with the last equal to 4 and each after the second equal to the sum of one or two of the preceding three.

Original entry on oeis.org

7, 12, 18, 27, 39, 53, 69, 87, 107, 129, 153, 179, 207, 237, 269, 303, 339, 377, 417, 459, 503, 549, 597, 647, 699, 753, 809, 867, 927, 989, 1053, 1119, 1187, 1257, 1329, 1403, 1479, 1557, 1637, 1719, 1803, 1889, 1977, 2067, 2159, 2253, 2349, 2447, 2547, 2649
Offset: 1

Views

Author

R. H. Hardin, May 04 2011

Keywords

Comments

Column 4 of A190041.

Examples

			Some solutions for n=3:
  2  1  1  3  1  2  0  1  0  1  1  2  0  1  1  4
  2  1  1  4  4  2  2  2  2  3  2  2  4  2  3  4
  4  2  2  4  4  2  2  2  2  3  2  2  4  3  4  4
  4  2  3  4  4  4  2  2  4  4  4  2  4  4  4  4
  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4
		

Crossrefs

Cf. A190041.

Formula

Empirical: a(n) = n^2 + 3*n - 1 for n>3.
Conjectures from Colin Barker, May 04 2018: (Start)
G.f.: x*(7 - 9*x + 3*x^2 + 2*x^3 - x^5) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
(End)

A190037 Number of nondecreasing arrangements of n+2 numbers in 0..5 with the last equal to 5 and each after the second equal to the sum of one or two of the preceding three.

Original entry on oeis.org

8, 12, 16, 23, 33, 45, 57, 69, 81, 93, 105, 117, 129, 141, 153, 165, 177, 189, 201, 213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 333, 345, 357, 369, 381, 393, 405, 417, 429, 441, 453, 465, 477, 489, 501, 513, 525, 537, 549, 561, 573, 585, 597, 609, 621, 633, 645
Offset: 1

Views

Author

R. H. Hardin, May 04 2011

Keywords

Comments

Column 5 of A190041.

Examples

			All solutions for n=3:
..5....1....2....1....1....4....1....0....1....1....1....2....3....2....1....1
..5....5....3....2....2....5....2....5....4....3....2....3....5....5....1....4
..5....5....5....3....3....5....3....5....4....4....2....3....5....5....2....5
..5....5....5....3....4....5....5....5....5....5....3....5....5....5....3....5
..5....5....5....5....5....5....5....5....5....5....5....5....5....5....5....5
		

Crossrefs

Cf. A190041.

Formula

Empirical: a(n) = 12*n - 27 for n>4.
Empirical: G.f.: x*(8 - 4*x + 3*x^3 + 3*x^4 + 2*x^5) / (1 - x)^2. a(n) = 2*a(n-1) - a(n-2) for n>2. - Colin Barker, May 04 2018

A190038 Number of nondecreasing arrangements of n+2 numbers in 0..6 with the last equal to 6 and each after the second equal to the sum of one or two of the preceding three.

Original entry on oeis.org

10, 18, 30, 47, 72, 107, 151, 203, 263, 331, 407, 491, 583, 683, 791, 907, 1031, 1163, 1303, 1451, 1607, 1771, 1943, 2123, 2311, 2507, 2711, 2923, 3143, 3371, 3607, 3851, 4103, 4363, 4631, 4907, 5191, 5483, 5783, 6091, 6407, 6731, 7063, 7403, 7751, 8107
Offset: 1

Views

Author

R. H. Hardin, May 04 2011

Keywords

Comments

Column 6 of A190041.

Examples

			Some solutions for n=3:
..3....1....3....3....2....1....1....5....1....0....2....2....1....0....2....3
..3....3....6....3....4....3....2....6....3....6....2....2....5....3....2....3
..6....3....6....3....4....3....3....6....3....6....4....4....5....3....2....3
..6....6....6....6....6....4....3....6....3....6....6....4....6....3....4....3
..6....6....6....6....6....6....6....6....6....6....6....6....6....6....6....6
		

Crossrefs

Cf. A190041.

Formula

Empirical: a(n) = 4*n^2 - 8*n + 11 for n>5.
Conjectures from Colin Barker, May 04 2018: (Start)
G.f.: x*(10 - 12*x + 6*x^2 + x^3 + 3*x^4 + 2*x^5 - x^6 - x^7) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8.
(End)

A190039 Number of nondecreasing arrangements of n+2 numbers in 0..7 with the last equal to 7 and each after the second equal to the sum of one or two of the preceding three.

Original entry on oeis.org

11, 17, 22, 31, 43, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500, 520, 540, 560, 580, 600, 620, 640, 660, 680, 700, 720, 740, 760, 780, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1020
Offset: 1

Views

Author

R. H. Hardin, May 04 2011

Keywords

Comments

Column 7 of A190041.

Examples

			Some solutions for n=3:
  3  1  1  6  7  2  1  1  2  0  2  1  1  2  5  3
  4  6  3  7  7  3  3  3  5  7  5  6  2  7  7  4
  7  7  4  7  7  5  4  4  7  7  5  6  3  7  7  4
  7  7  5  7  7  7  4  7  7  7  7  7  4  7  7  7
  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7
		

Crossrefs

Cf. A190041.

Formula

Empirical: a(n) = 20*n - 60 for n>5.
Conjectures from Colin Barker, May 04 2018: (Start)
G.f.: x*(11 - 5*x - x^2 + 4*x^3 + 3*x^4 + 5*x^5 + 3*x^6) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>7.
(End)

A190040 Number of nondecreasing arrangements of n+2 numbers in 0..8 with the last equal to 8 and each after the second equal to the sum of one or two of the preceding three.

Original entry on oeis.org

13, 24, 40, 65, 105, 164, 246, 349, 472, 617, 786, 981, 1204, 1457, 1742, 2061, 2416, 2809, 3242, 3717, 4236, 4801, 5414, 6077, 6792, 7561, 8386, 9269, 10212, 11217, 12286, 13421, 14624, 15897, 17242, 18661, 20156, 21729, 23382, 25117, 26936, 28841
Offset: 1

Views

Author

R. H. Hardin, May 04 2011

Keywords

Comments

Column 8 of A190041.

Examples

			Some solutions for n=3:
..1....2....6....0....0....0....1....2....3....2....1....2....8....3....2....1
..4....4....8....8....4....4....4....4....8....6....4....6....8....4....3....7
..4....4....8....8....4....4....4....4....8....6....4....8....8....4....5....8
..8....4....8....8....4....8....5....8....8....8....4....8....8....4....8....8
..8....8....8....8....8....8....8....8....8....8....8....8....8....8....8....8
		

Crossrefs

Cf. A190041.

Formula

Empirical: a(n) = (1/3)*n^3 + 2*n^2 + (50/3)*n - 83 for n>6.
Conjectures from Colin Barker, May 04 2018: (Start)
G.f.: x*(13 - 28*x + 22*x^2 - 3*x^3 + 2*x^4 - 2*x^5 - 6*x^7 + x^8 + 3*x^9) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>6.
(End)

A190042 Number of nondecreasing arrangements of 5 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding three.

Original entry on oeis.org

2, 8, 10, 18, 16, 30, 22, 40, 31, 49, 36, 64, 41, 71, 53, 81, 55, 97, 61, 103, 74, 112, 75, 131, 80, 134, 96, 144, 94, 164, 100, 166, 117, 175, 114, 198, 119, 197, 139, 207, 133, 231, 139, 229, 160, 238, 153, 265, 158, 260, 182, 270, 172, 298, 178, 292, 203, 301, 192
Offset: 1

Views

Author

R. H. Hardin, May 04 2011

Keywords

Comments

Row 3 of A190041.

Examples

			All solutions for n=3:
..1....1....1....3....0....1....1....0....2....1
..1....1....3....3....3....2....2....1....3....1
..1....2....3....3....3....3....2....1....3....2
..2....2....3....3....3....3....3....2....3....3
..3....3....3....3....3....3....3....3....3....3
		

Crossrefs

Cf. A190041.

Formula

Empirical: a(n) = -2*a(n-1) -2*a(n-2) +3*a(n-4) +4*a(n-5) +3*a(n-6) -2*a(n-8) -2*a(n-9) -a(n-10).
Empirical g.f.: x*(2 + 12*x + 30*x^2 + 54*x^3 + 66*x^4 + 66*x^5 + 46*x^6 + 26*x^7 + 9*x^8 + 3*x^9) / ((1 - x)^2*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2). - Colin Barker, May 04 2018

A190043 Number of nondecreasing arrangements of 6 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding three.

Original entry on oeis.org

2, 10, 14, 27, 23, 47, 31, 65, 49, 76, 52, 113, 58, 109, 92, 132, 78, 167, 87, 172, 127, 172, 108, 240, 116, 208, 167, 237, 133, 292, 143, 272, 205, 271, 169, 366, 167, 307, 244, 348, 189, 407, 198, 377, 290, 369, 218, 493, 223, 413, 322, 445, 244, 528, 263, 482, 358, 468
Offset: 1

Views

Author

R. H. Hardin, May 04 2011

Keywords

Comments

Row 4 of A190041.

Examples

			All solutions for n=3:
..0....1....1....0....1....0....1....1....1....0....1....2....1....3
..1....2....2....1....1....3....1....3....1....1....1....3....1....3
..1....3....2....1....2....3....1....3....2....1....1....3....1....3
..2....3....3....2....2....3....1....3....3....1....2....3....2....3
..3....3....3....2....3....3....2....3....3....2....3....3....2....3
..3....3....3....3....3....3....3....3....3....3....3....3....3....3
		

Crossrefs

Cf. A190041.

Formula

Empirical: a(n) = -4*a(n-1) -11*a(n-2) -23*a(n-3) -40*a(n-4) -59*a(n-5) -75*a(n-6) -81*a(n-7) -71*a(n-8) -42*a(n-9) +4*a(n-10) +59*a(n-11) +112*a(n-12) +150*a(n-13) +164*a(n-14) +150*a(n-15) +112*a(n-16) +59*a(n-17) +4*a(n-18) -42*a(n-19) -71*a(n-20) -81*a(n-21) -75*a(n-22) -59*a(n-23) -40*a(n-24) -23*a(n-25) -11*a(n-26) -4*a(n-27) -a(n-28).
Empirical g.f.: x*(2 + 18*x + 76*x^2 + 239*x^3 + 595*x^4 + 1276*x^5 + 2393*x^6 + 4053*x^7 + 6246*x^8 + 8890*x^9 + 11721*x^10 + 14448*x^11 + 16654*x^12 + 18046*x^13 + 18363*x^14 + 17598*x^15 + 15834*x^16 + 13401*x^17 + 10606*x^18 + 7850*x^19 + 5387*x^20 + 3421*x^21 + 1976*x^22 + 1037*x^23 + 476*x^24 + 189*x^25 + 59*x^26 + 14*x^27) / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)*(1 + x^2)^2*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, May 04 2018

A190044 Number of nondecreasing arrangements of 7 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding three.

Original entry on oeis.org

2, 12, 18, 39, 33, 72, 43, 105, 69, 123, 72, 190, 83, 169, 151, 217, 108, 276, 120, 297, 206, 261, 150, 427, 179, 318, 259, 405, 185, 509, 201, 452, 326, 413, 277, 652, 228, 470, 383, 626, 263, 688, 276, 631, 501, 559, 303, 893, 323, 673, 509, 748, 341, 883, 418, 831
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Row 5 of A190041

Examples

			Some solutions for n=3
..0....0....2....1....1....1....1....1....0....0....0....0....1....3....1....1
..1....3....3....1....1....2....1....1....1....1....1....1....1....3....1....1
..1....3....3....1....1....2....2....1....1....1....1....1....2....3....1....1
..1....3....3....1....2....3....2....1....2....2....1....1....3....3....2....1
..2....3....3....1....3....3....3....2....2....3....1....2....3....3....2....2
..3....3....3....2....3....3....3....3....3....3....2....2....3....3....3....2
..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3
		

Formula

Empirical: a(n) = -4*a(n-1) -13*a(n-2) -33*a(n-3) -75*a(n-4) -152*a(n-5) -286*a(n-6) -500*a(n-7) -826*a(n-8) -1292*a(n-9) -1929*a(n-10) -2753*a(n-11) -3772*a(n-12) -4965*a(n-13) -6291*a(n-14) -7671*a(n-15) -9002*a(n-16) -10148*a(n-17) -10961*a(n-18) -11284*a(n-19) -10976*a(n-20) -9925*a(n-21) -8069*a(n-22) -5411*a(n-23) -2025*a(n-24) +1935*a(n-25) +6252*a(n-26) +10648*a(n-27) +14823*a(n-28) +18464*a(n-29) +21297*a(n-30) +23091*a(n-31) +23708*a(n-32) +23091*a(n-33) +21297*a(n-34) +18464*a(n-35) +14823*a(n-36) +10648*a(n-37) +6252*a(n-38) +1935*a(n-39) -2025*a(n-40) -5411*a(n-41) -8069*a(n-42) -9925*a(n-43) -10976*a(n-44) -11284*a(n-45) -10961*a(n-46) -10148*a(n-47) -9002*a(n-48) -7671*a(n-49) -6291*a(n-50) -4965*a(n-51) -3772*a(n-52) -2753*a(n-53) -1929*a(n-54) -1292*a(n-55) -826*a(n-56) -500*a(n-57) -286*a(n-58) -152*a(n-59) -75*a(n-60) -33*a(n-61) -13*a(n-62) -4*a(n-63) -a(n-64)
Showing 1-10 of 13 results. Next