cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A190063 Number of arrangements of n+1 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

0, 12, 166, 3481, 88509, 2783714, 101530262, 4232955454, 198636188057, 10408538943146, 603033909983829, 38103929980500423, 2608648993698684772, 193359775333060165517, 15364574547397697984616, 1301880431718317296701496
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Diagonal of A190071

Examples

			Some solutions for n=4
..4...-1...-2....1...-1...-4....4...-3...-2...-4...-3...-3....4...-1....2...-2
..4...-2...-1....1....2...-4....1...-2...-3....2....1....4....2....1....2...-1
.-2....1...-2....3...-4...-2...-3...-1...-4....2...-4...-2...-2...-1....2...-3
.-1....3....2...-4....4....1....2....3....2...-2...-2...-1....2...-2....4....2
..1....2...-1....4....2...-1...-1...-1....3...-1...-2...-2...-4...-2...-2...-2
		

A190064 Number of arrangements of n+1 nonzero numbers x(i) in -2..2 with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

2, 12, 40, 144, 550, 1896, 7584, 27328, 105348, 398760, 1538696, 5872800, 22646862, 87492676, 339055650, 1313842904, 5104724558, 19873572892, 77470783406, 302258087616, 1180840902336, 4618922848536, 18083348822516, 70852652846320
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Column 2 of A190071

Examples

			Some solutions for n=4
.-2...-1...-1...-2...-2....1....2...-1...-1....2...-2....1....2....2....1....1
.-2....1....1...-1...-1...-1....1....1...-2...-1....1....1...-1....2...-2....1
..2....1...-2....1....1...-1....2....2....1...-2....1....2....2....2....1....1
.-2...-1....2....2...-2....2...-2...-2....1....2....1...-1....1...-2....2...-1
.-2...-2....1...-2....2....2....2...-1....2....1....2...-1....1....2....1....1
		

A190065 Number of arrangements of n+1 nonzero numbers x(i) in -3..3 with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

6, 36, 166, 922, 5136, 28656, 162028, 910716, 5162308, 29554964, 169886511, 978214225, 5650347932, 32745824773, 190185910978, 1106505067832, 6449387884888, 37654438607875, 220148079884339, 1288689800220653
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Column 3 of A190071

Examples

			Some solutions for n=4
.-1...-2....2...-2...-1...-1....3....2....1....2...-1....2...-3....2....2...-1
..3...-3....1....3...-3...-1...-2....1....1....2....1...-3....3....1...-2...-1
..3....2...-1...-2...-3....1...-1...-1....1....3...-3...-3...-1...-1...-2...-1
.-2....1....1...-2....2....2....2....2...-1....2...-2...-3...-3...-3...-2....1
.-2...-1...-2...-2....3....3....3...-3....1...-1....2....2...-1....2....2...-1
		

A190066 Number of arrangements of n+1 nonzero numbers x(i) in -4..4 with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

12, 76, 483, 3481, 25306, 191456, 1436962, 10802667, 81709584, 622881909, 4769974211, 36631166224, 282173132213, 2179898773167, 16878487835945, 130935467642770, 1017555976447868, 7920656405513158, 61741451812499715
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Column 4 of A190071

Examples

			Some solutions for n=5
..3...-2....2....3...-1....3...-1...-2...-4...-1...-1....3...-1....1...-3....4
.-1....2....2....3...-2...-3....2...-4...-4....2...-4....3....2....4....4...-2
.-2....3...-4...-3...-4...-1....3...-1....3....4....1....3...-4...-3...-3....3
.-2....3....4...-2...-4....2....1....2....1....2....2...-3....3....3...-4....2
.-1...-2....3....3....2...-4...-1...-4...-4....2....2....3....1...-4...-2....1
..3...-4...-2...-2...-2....4....1....1....3...-1....1....4....2...-2....2...-4
		

A190067 Number of arrangements of n+1 nonzero numbers x(i) in -5..5 with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

20, 143, 1126, 9904, 88509, 834717, 7843113, 73725405, 697624797, 6644826507, 63556636483, 609902716100, 5871497904831, 56683948490522, 548487091412193, 5317814454716839, 51651465543152430, 502495332741155890
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Column 5 of A190071

Examples

			Some solutions for n=4
.-3....5....1...-1....1....2....3....4...-4....4....2...-5....4....1...-5....4
..4...-3...-3...-2....2...-4...-2....1...-3...-3....1...-5...-5...-5....5...-1
..1....5....3...-3...-3....2...-2....3....3....4...-5....3...-2...-3...-5...-3
..3....4...-5....2....2....1...-3...-1....5...-5....3...-3....1....2...-2...-5
.-1....4...-5...-3....1...-2....5....1...-3...-3....5...-2...-1....5....5...-3
		

A190068 Number of arrangements of n+1 nonzero numbers x(i) in -6..6 with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

30, 233, 2276, 23400, 249119, 2783714, 31391655, 353856100, 4017545773, 45918810745, 526830982562, 6064138473938, 70033913982429, 811112118405079, 9415846493673903, 109526722276860886, 1276368965090149581
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Column 6 of A190071

Examples

			Some solutions for n=4
..4...-6....1...-3...-5...-1...-4...-2...-4...-5....2....4...-5....1....4....1
.-5....4...-5...-6....2....4...-4...-5....3...-5...-5...-3....3...-3...-5....3
.-4...-5...-5....5...-4...-2...-6....3....6....6....4...-5....6....3...-4....5
..6...-2....5....4...-5...-4....4....3....6....6....2....5....4....2....3....5
.-4....2...-6....5...-3...-2...-5...-4....6...-6...-6....4....3...-3...-5...-3
		

A190069 Number of arrangements of n+1 nonzero numbers x(i) in -7..7 with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

42, 366, 4150, 48491, 599181, 7737762, 101530262, 1333341624, 17643516841, 235162515839, 3146321736755, 42232649776342, 568807797004946, 7683091138249061, 104022021281511319, 1411291383524511348
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Column 7 of A190071

Examples

			Some solutions for n=4
..5....3...-4...-5....7....3....1....1....5...-3....3....1...-4....2....4....5
.-5....5...-6...-5....3...-2...-3....2...-1...-2...-3...-5...-2...-3....6...-1
.-5...-3...-7...-7...-2...-7...-3....6....3....1....6....3...-7....2...-5...-1
..7...-2....4....7....2...-5...-4....6....6....2....4...-7....6....1...-3...-7
..5....4....5...-6...-3....4....3...-5....1....7....4...-5...-5...-4....5...-3
		

A190070 Number of arrangements of n+1 nonzero numbers x(i) in -8..8 with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

56, 536, 6946, 92478, 1291797, 18951546, 282859251, 4232955454, 63898862902, 972408511316, 14859125421285, 227805216299376, 3504714306481893, 54079878634478640, 836480995724826396, 12965711458798193610
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Column 8 of A190071

Examples

			Some solutions for n=4
..7....8....8....5...-3...-6...-2...-2...-7....2....3...-7...-8....5....8...-3
..6....3....2....8...-8....4...-3....6....8...-5...-7...-6....8....2....8....5
.-2....5...-4....8....6....3....6...-8....8...-3....3....8....8...-6...-4...-3
.-3...-8....1...-4....5....3....6....7....5....5....1....5....7....4....6...-4
.-6....7...-8...-7....8....6...-4....2...-4...-3...-7...-2...-7...-6....3...-6
		

A190072 Number of arrangements of 3 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

4, 12, 36, 76, 143, 233, 366, 536, 760, 1028, 1363, 1751, 2221, 2758, 3387, 4096, 4907, 5804, 6819, 7931, 9174, 10525, 12021, 13631, 15401, 17299, 19366, 21572, 23959, 26490, 29220, 32114, 35210, 38476, 41963, 45629, 49527, 53618, 57953, 62489, 67285
Offset: 1

Views

Author

R. H. Hardin, May 04 2011

Keywords

Comments

Row 2 of A190071.

Examples

			Some solutions for n=4
.-1....1....4...-2...-1....1...-3...-4...-2...-1...-1....2...-4...-3....3....1
..3...-1...-4...-4....1....3...-3...-3....3...-3...-1....2...-2....4...-3...-1
..2...-3...-4....4....1....4....3....2....2....4....1...-2....1....4...-4...-2
		

Crossrefs

Cf. A190071.

A190073 Number of arrangements of 4 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.

Original entry on oeis.org

0, 40, 166, 483, 1126, 2276, 4150, 6946, 10909, 16353, 23728, 33290, 45591, 61100, 80161, 103121, 130833, 163649, 202441, 247746, 300269, 360694, 430361, 508989, 598090, 698534, 811133, 936287, 1075989, 1230312, 1401309, 1589246, 1795222
Offset: 1

Views

Author

R. H. Hardin May 04 2011

Keywords

Comments

Row 3 of A190071

Examples

			Some solutions for n=4
..4...-3...-3...-4....2...-4...-1...-1...-1...-4...-4....3....2....3...-2....1
.-4....3....3....1....3....3...-1....4....3...-3...-4....3...-1...-1...-4....4
..3....3....3....4...-2...-4...-3...-4....2....2...-4....2...-1...-4...-4...-3
..1...-4....4....1...-3...-3....2...-2....3....3....3...-1...-1...-3....3...-3
		
Showing 1-10 of 15 results. Next