A190072 Number of arrangements of 3 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.
4, 12, 36, 76, 143, 233, 366, 536, 760, 1028, 1363, 1751, 2221, 2758, 3387, 4096, 4907, 5804, 6819, 7931, 9174, 10525, 12021, 13631, 15401, 17299, 19366, 21572, 23959, 26490, 29220, 32114, 35210, 38476, 41963, 45629, 49527, 53618, 57953, 62489, 67285
Offset: 1
Keywords
Examples
Some solutions for n=4 .-1....1....4...-2...-1....1...-3...-4...-2...-1...-1....2...-4...-3....3....1 ..3...-1...-4...-4....1....3...-3...-3....3...-3...-1....2...-2....4...-3...-1 ..2...-3...-4....4....1....4....3....2....2....4....1...-2....1....4...-4...-2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A190071.
Comments