A190073 Number of arrangements of 4 nonzero numbers x(i) in -n..n with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.
0, 40, 166, 483, 1126, 2276, 4150, 6946, 10909, 16353, 23728, 33290, 45591, 61100, 80161, 103121, 130833, 163649, 202441, 247746, 300269, 360694, 430361, 508989, 598090, 698534, 811133, 936287, 1075989, 1230312, 1401309, 1589246, 1795222
Offset: 1
Keywords
Examples
Some solutions for n=4 ..4...-3...-3...-4....2...-4...-1...-1...-1...-4...-4....3....2....3...-2....1 .-4....3....3....1....3....3...-1....4....3...-3...-4....3...-1...-1...-4....4 ..3....3....3....4...-2...-4...-3...-4....2....2...-4....2...-1...-4...-4...-3 ..1...-4....4....1...-3...-3....2...-2....3....3....3...-1...-1...-3....3...-3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Comments