cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190107 Numbers with prime factorization pqr^2s^4.

This page as a plain text file.
%I A190107 #13 May 20 2017 11:53:56
%S A190107 5040,7920,8400,9360,11088,11340,11760,12240,13104,13200,13680,15600,
%T A190107 16560,17136,17820,19152,20400,20592,20880,21060,22320,22800,23184,
%U A190107 24948,25872,26640,26928,27540,27600,28350,29040,29232,29484,29520
%N A190107 Numbers with prime factorization pqr^2s^4.
%C A190107 A050326(a(n)) = 3. - _Reinhard Zumkeller_, May 03 2013
%H A190107 T. D. Noe, <a href="/A190107/b190107.txt">Table of n, a(n) for n = 1..1000</a>
%H A190107 Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a>
%H A190107 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a>
%t A190107 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,2,4};Select[Range[60000],f]
%o A190107 (PARI) list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtnint(lim\60, 4), t1=p^4; forprime(q=2,sqrtint(lim\(6*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,lim\(2*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ _Charles R Greathouse IV_, Aug 25 2016
%Y A190107 Cf. A111467, A179704, A190106.
%K A190107 nonn
%O A190107 1,1
%A A190107 _Vladimir Joseph Stephan Orlovsky_, May 04 2011