cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190125 If n = product(p_i^e_i), a(n) = product((p_i^e_i)^(p_i^e_i)).

This page as a plain text file.
%I A190125 #6 Mar 30 2012 17:35:24
%S A190125 1,4,27,256,3125,108,823543,16777216,387420489,12500,285311670611,
%T A190125 6912,302875106592253,3294172,84375,18446744073709551616,
%U A190125 827240261886336764177,1549681956,1978419655660313589123979,800000,22235661,1141246682444
%N A190125 If n = product(p_i^e_i), a(n) = product((p_i^e_i)^(p_i^e_i)).
%C A190125 Multiplicative with a(p^e) = (p^e)^(p^e) = p^(e*p^e).
%C A190125 Equivalently, product over pp a unitary prime power divisor of n of pp^pp.
%o A190125 (PARI) a(n)=local(fm,pp);fm=factor(n);prod(k=1,matsize(fm)[1],(pp=fm[k,1]^fm[k,2])^pp)
%Y A190125 Cf. A133482.
%K A190125 nonn,mult
%O A190125 1,2
%A A190125 _Franklin T. Adams-Watters_, May 05 2011