This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190130 #16 Feb 16 2025 08:33:14 %S A190130 1,8,64,512,4096,4097,4098,4099,4100,4101,4102,4103,513,4104,4105, %T A190130 4106,4107,4108,4109,4110,4111,514,4112,4113,4114,4115,4116,4117,4118, %U A190130 4119,515,4120,4121,4122,4123,4124,4125,4126,4127,516,4128,4129,4130,4131,4132 %N A190130 Numbers 1 through 10000 sorted lexicographically in octal representation (base 8). %C A190130 A190131 = inverse permutation: a(A190131(n)) = A190131(a(n)) = n; %C A190130 a(n) <> n for n > 1. %H A190130 Reinhard Zumkeller, <a href="/A190130/b190130.txt">Table of n, a(n) for n = 1..10000</a> (full sequence) %H A190130 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LexicographicOrder.html">Lexicographic Order</a> %H A190130 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Octal.html">Octal</a> %H A190130 Wikipedia, <a href="http://en.wikipedia.org/wiki/Lexicographical_order">Lexicographical order</a> %H A190130 Wikipedia, <a href="http://en.wikipedia.org/wiki/Octal">Octal</a> %e A190130 a(10) = 4101 -> 10005 [oct]; %e A190130 a(11) = 4102 -> 10006 [oct]; %e A190130 a(12) = 4103 -> 10007 [oct]; %e A190130 a(13) = 513 -> 1001 [oct]; %e A190130 a(14) = 4104 -> 10010 [oct]; %e A190130 a(15) = 4105 -> 10011 [oct]; %e A190130 a(16) = 4106 -> 10012 [oct]; %e A190130 largest term a(67151) = 10000 -> 23420 [oct]; %e A190130 last term a(10000) = 4095 -> 7777 [oct], largest term lexicographically. %o A190130 (Haskell) %o A190130 import Data.Ord (comparing) %o A190130 import Data.List (sortBy) %o A190130 a190130 n = a190130_list !! (n-1) %o A190130 a190130_list = sortBy (comparing (show . a007094)) [1..10000] %Y A190130 A007094; A190126 (base 2), A190128 (base 3), A190016 (base 10), A190132 (base 12), A190134 (base 16). %K A190130 nonn,base,fini,full %O A190130 1,2 %A A190130 _Reinhard Zumkeller_, May 06 2011