This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190132 #19 Feb 16 2025 08:33:14 %S A190132 1,12,144,1728,1729,1730,1731,1732,1733,1734,1735,1736,1737,1738,1739, %T A190132 145,1740,1741,1742,1743,1744,1745,1746,1747,1748,1749,1750,1751,146, %U A190132 1752,1753,1754,1755,1756,1757,1758,1759,1760,1761,1762,1763,147,1764,1765 %N A190132 Numbers 1 through 10000 sorted lexicographically in duodecimal representation (base 12). %C A190132 A190133 = inverse permutation: a(A190133(n)) = A190133(a(n)) = n; %C A190132 a(n) <> n for n > 1. %H A190132 Reinhard Zumkeller, <a href="/A190132/b190132.txt">Table of n, a(n) for n = 1..10000</a> (full sequence) %H A190132 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LexicographicOrder.html">Lexicographic Order</a> %H A190132 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Duodecimal.html">Duodecimal</a> %H A190132 Wikipedia, <a href="http://en.wikipedia.org/wiki/Lexicographical_order">Lexicographical order</a> %H A190132 Wikipedia, <a href="http://en.wikipedia.org/wiki/Duodecimal">Duodecimal</a> %e A190132 a(13) = 1737 -> 1009 [doz]; %e A190132 a(14) = 1738 -> 100A [doz]; %e A190132 a(15) = 1739 -> 100B [doz]; %e A190132 a(16) = 145 -> 101 [doz]; %e A190132 a(17) = 1740 -> 1010 [doz]; %e A190132 a(18) = 1741 -> 1011 [doz]; %e A190132 largest term a(9026) = 10000 -> 5282 [doz]; %e A190132 last term a(10000) = 1727 -> BBB [doz], largest term lexicographically. %o A190132 (Haskell) %o A190132 import Data.Ord (comparing) %o A190132 import Data.List (sortBy) %o A190132 import Numeric (showIntAtBase) %o A190132 import Data.Char (intToDigit) %o A190132 a190132 n = a190132_list !! (n-1) %o A190132 a190132_list = %o A190132 sortBy (comparing (flip (showIntAtBase 12 intToDigit) "")) [1..10000] %Y A190132 Cf. A190126 (base 2), A190128 (base 3), A190130 (base 8), A190016 (base 10), A190134 (base 16). %K A190132 nonn,base,fini,full %O A190132 1,2 %A A190132 _Reinhard Zumkeller_, May 06 2011