cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190138 Final number of terms obtained with Euler's recurrence formula when computing the sum of divisors of n.

This page as a plain text file.
%I A190138 #17 Sep 23 2018 22:28:21
%S A190138 1,2,3,5,9,15,27,46,80,138,238,413,713,1235,2136,3695,6393,11057,
%T A190138 19130,33091,57246,99032,171315,296365,512682,886902,1534266,2654154,
%U A190138 4591475,7942870,13740526,23769981,41120131,71134474,123056829,212878289,368262059,637063333
%N A190138 Final number of terms obtained with Euler's recurrence formula when computing the sum of divisors of n.
%C A190138 It appears that a(n) is the number of compositions of n whose parts are pentagonal numbers. See Neville link. - _Michel Marcus_, Jul 28 2017
%H A190138 Leonhard Euler, Jordan Bell, <a href="http://arxiv.org/abs/math/0507201">A demonstration of a theorem on the order observed in the sums of divisors</a>, arXiv:math/0507201 [math.HO], 2005-2009.
%H A190138 Leonhard Euler, Jordan Bell, <a href="http://arxiv.org/abs/math/0411587">An observation on the sums of divisors</a>, arXiv:math/0411587 [math.HO], 2004-2009.
%H A190138 N. Robbins, <a href="http://ac.inf.elte.hu/Vol_043_2014/239_43.pdf">On compositions whose parts are polygonal numbers</a>, Annales Univ. Sci. Budapest., Sect. Comp. 43 (2014) 239-243. See p. 242.
%e A190138 For n=5, start with row 5 of A195310: [4, 3, 0]. Then replace 4 by row 4: [3, 2], replace 3 by row 3: [2, 1]. The row is now [3, 2, 2, 1, 0].
%e A190138 Repeat process until all terms are 0: [4, 3, 0], [3, 2, 2, 1, 0], [2, 1, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0].
%e A190138 The final array has 9 items, hence a(5) = 9.
%t A190138 rows = 30;
%t A190138 gpenta[n_] := If[EvenQ[n], n(3n/2+1)/4, (n+1)(3n+1)/8];
%t A190138 T[n_, k_] := n - gpenta[k];
%t A190138 Do[row[n] = DeleteCases[Table[T[n, k], {k, n}], _?Negative], {n, rows}];
%t A190138 a[n_] := a[n] = row[n] //. j_?Positive :> Sequence @@ row[j] // Length;
%t A190138 Table[Print["a(", n, ") = ", a[n]]; a[n], {n, rows}] (* _Jean-François Alcover_, Sep 22 2018 *)
%o A190138 (PARI)
%o A190138 A001318(n) = { return((3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8);}
%o A190138 A195310(n) = {if (n == 0, return ([0])); nb = 1; vec = vector(0); nn = n; while (nn >=0, nn = n - A001318(nb); if (nn >=0, vec = concat(vec, nn)); nb++;); return(vec);}
%o A190138 A190138(m) = { vval = vector(m); for (n=1, m, vec = A195310(n); svec = 0; for (k=1, length(vec), if (vec[k] == 0, svec += 1, svec += vval[vec[k]]);); vval[n] = svec;); for (n=1, m, print1(vval[n], ", "););}
%Y A190138 Cf. A000203, A001318, A195310.
%K A190138 nonn
%O A190138 1,2
%A A190138 _Michel Marcus_, Dec 19 2012