This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190139 #55 Sep 08 2022 08:45:56 %S A190139 1,1,3,8,21,54,140,363,941,2439,6322,16387,42476,110100,285385,739733, %T A190139 1917427,4970072,12882689,33392610,86555408,224356187,581543081, %U A190139 1507390367,3907235410,10127760455,26251689768,68045765768,176378217169,457181650329,1185038973363 %N A190139 a(n) = 2*a(n-1) + a(n-2) + a(n-3) + a(n-4), a(-2)=0, a(-1)=0, a(0)=1, a(1)=1. %C A190139 Number of compositions of n where there is one sort of part 1, two sorts of part 2, three sorts of part 3, and four sorts of every other part. - _Joerg Arndt_, Mar 15 2014 %H A190139 G. C. Greubel, <a href="/A190139/b190139.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..200 from Vincenzo Librandi) %H A190139 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,1,1) %F A190139 G.f.: (1-x)/(1-2*x-x^2-x^3-x^4). %F A190139 a(n) = Sum_{k=1..n} (Sum_{t=k..n} (Sum_{j=0..k} C(k,j) * Sum_{i=j..t-k+j} C(j,i-j)*C(k-j,t-3*(k-j)-i)*C(-t+n+k-1,k-1))), n>0, a(0)=1. %F A190139 a(n) = A103142(n) - A103142(n-1). - _R. J. Mathar_, Sep 17 2011 %t A190139 RecurrenceTable[{a[n] == 2 a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4], a[-2] == a[-1] == 0, a[0] == a[1] == 1}, a, {n, 0, 30}] (* _Michael De Vlieger_, Oct 28 2015 *) %t A190139 LinearRecurrence[{2, 1, 1, 1}, {1, 1, 3, 8}, 31] (* _Michael De Vlieger_, Oct 28 2015 *) %t A190139 nxt[{a_,b_,c_,d_}]:={b,c,d,2d+c+b+a}; NestList[nxt,{0,0,1,1},50][[All,1]] (* _Harvey P. Dale_, Mar 04 2022 *) %o A190139 (Maxima) %o A190139 a(n):=sum(sum((sum(binomial(k,j)*sum(binomial(j,i-j)*binomial(k-j,t-3*(k-j)-i),i,j,t-k+j),j,0,k))*binomial(-t+n+k-1,k-1),t,k,n),k,1,n); %o A190139 (Magma) I:=[1,1,3,8]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)+Self(n-3)+Self(n-4): n in [1..40]]; // _Vincenzo Librandi_, Sep 20 2011 %o A190139 (PARI) x='x+O('x^30); Vec((1-x)/(1-2*x-x^2-x^3-x^4)) \\ _G. C. Greubel_, Dec 29 2017 %K A190139 nonn %O A190139 0,3 %A A190139 _Vladimir Kruchinin_, May 05 2011 %E A190139 Deleted certain dangerous or potentially dangerous links. - _N. J. A. Sloane_, Jan 30 2021