A190142 Decimal expansion of limit sqrt(2’*sqrt(3’*sqrt(4’*sqrt(5’*sqrt(6’*...))))), where n’ is the arithmetic derivative of n.
1, 2, 9, 1, 3, 4, 3, 1, 7, 2, 1, 0, 7, 2, 5, 9, 5, 4, 6, 1, 3, 8, 8, 2, 2, 9, 5, 6, 5, 3, 3, 4, 3, 8, 6, 9, 7, 0, 3, 2, 2, 0, 5, 0, 2, 2, 9, 6, 1, 8, 7, 4, 2, 4, 0, 3, 6, 5, 9, 8, 4, 8, 6, 7, 3, 9, 6, 4, 3, 9, 4, 9, 0, 6, 5, 2, 4, 1, 4, 9, 4, 0, 8, 9, 9, 7, 7, 9, 0, 3, 7, 0, 7, 9, 3, 4, 1, 3, 7, 3, 3, 8, 0, 0, 4
Offset: 1
Examples
1.29134317210725954613882...
Programs
-
Maple
with(numtheory); P:=proc(i) local a,f,n,p,pfs; a:=1; for n from i by -1 to 2 do pfs:=ifactors(n)[2]; f:=n*add(op(2,p)/op(1,p),p=pfs) ; a:=f*sqrt(a); od; print(evalf(sqrt(a),150)); end: P(500);
-
Mathematica
digits = 105; d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; f[n_] := f[n] = Fold[Sqrt[d[#2]*#1]&, n, Range[n-1, 2, -1]] // RealDigits[#, 10, digits]& // First; f[digits]; f[n = 2*digits]; While[f[n] != f[n/2], n = 2*n]; f[n] (* Jean-François Alcover, Feb 21 2014 *)