cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190142 Decimal expansion of limit sqrt(2’*sqrt(3’*sqrt(4’*sqrt(5’*sqrt(6’*...))))), where n’ is the arithmetic derivative of n.

Original entry on oeis.org

1, 2, 9, 1, 3, 4, 3, 1, 7, 2, 1, 0, 7, 2, 5, 9, 5, 4, 6, 1, 3, 8, 8, 2, 2, 9, 5, 6, 5, 3, 3, 4, 3, 8, 6, 9, 7, 0, 3, 2, 2, 0, 5, 0, 2, 2, 9, 6, 1, 8, 7, 4, 2, 4, 0, 3, 6, 5, 9, 8, 4, 8, 6, 7, 3, 9, 6, 4, 3, 9, 4, 9, 0, 6, 5, 2, 4, 1, 4, 9, 4, 0, 8, 9, 9, 7, 7, 9, 0, 3, 7, 0, 7, 9, 3, 4, 1, 3, 7, 3, 3, 8, 0, 0, 4
Offset: 1

Views

Author

Paolo P. Lava, May 05 2011

Keywords

Examples

			1.29134317210725954613882...
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local a,f,n,p,pfs;
    a:=1;
    for n from i by -1 to 2 do
      pfs:=ifactors(n)[2];
      f:=n*add(op(2,p)/op(1,p),p=pfs) ;
      a:=f*sqrt(a);
    od;
    print(evalf(sqrt(a),150));
    end:
    P(500);
  • Mathematica
    digits = 105; d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; f[n_] := f[n] = Fold[Sqrt[d[#2]*#1]&, n, Range[n-1, 2, -1]] // RealDigits[#, 10, digits]& // First; f[digits]; f[n = 2*digits]; While[f[n] != f[n/2], n = 2*n]; f[n] (* Jean-François Alcover, Feb 21 2014 *)