A190147 Decimal expansion of Sum{k=1..infinity}(1/Sum{j=1..k} j^j’), where n’ is the arithmetic derivative of n.
1, 5, 0, 7, 8, 1, 0, 6, 6, 7, 6, 2, 2, 8, 9, 8, 2, 8, 3, 8, 3, 3, 1, 5, 3, 9, 0, 3, 7, 6, 5, 3, 7, 7, 7, 2, 7, 2, 4, 7, 3, 4, 6, 8, 8, 5, 1, 9, 3, 8, 9, 5, 5, 8, 5, 5, 3, 1, 9, 1, 3, 9, 0, 8, 6, 3, 0, 1, 2, 5, 3, 8, 1, 3, 3, 9, 5, 8, 9, 8, 9, 1, 1, 6, 7, 1, 4, 7, 5, 0, 5, 2, 5, 1, 0, 6, 3, 0, 6, 1, 3, 1, 7, 1, 2, 7, 1, 9, 4, 9, 9, 2, 2, 7, 3, 6, 6, 2, 4, 9
Offset: 1
Examples
1/1^1’+1/(1^1’+2^2’)+1/(1^1’+2^2’+3^3’)+1/(1^1’+2^2’+3^3’+4^4’)+... = 1+1/3+1/6+1/262+... = 1.50781066762289...
Programs
-
Maple
with(numtheory); P:=proc(i) local a,b,f,n,p,pfs; a:=0; b:=0; for n from 1 by 1 to i do pfs:=ifactors(n)[2]; f:=n*add(op(2,p)/op(1,p),p=pfs); b:=b+n^f; a:=a+1/b; od; print(evalf(a,300)); end: P(1000);
-
Mathematica
digits = 120; d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; p[m_] := p[m] = Sum[1/Sum[j^d[j], {j, 1, k}], {k, 1, m}] // RealDigits[#, 10, digits]& // First; p[digits]; p[m = 2*digits]; While[p[m] != p[m/2], m = 2*m]; p[m] (* Jean-François Alcover, Feb 21 2014 *)