A190162 Number of peakless Motzkin paths of length n containing no subwords of type dh^ju (j>=1), where u=(1,1), h=(1,0), and d=(1,-1) (can be easily expressed using RNA secondary structure terminology).
1, 1, 1, 2, 4, 8, 17, 36, 77, 167, 365, 805, 1790, 4008, 9033, 20477, 46663, 106843, 245691, 567194, 1314086, 3054442, 7120951, 16647056, 39015476, 91654385, 215780420, 509033640, 1203085539, 2848445175, 6755095119, 16044373511, 38162885226, 90897048648
Offset: 0
Keywords
Examples
a(7)=36 because among the 37 (=A004148(7)) peakless Motzkin paths of length 7 only uh(dhu)hd has a subword of the forbidden type (shown between parentheses).
Programs
-
Maple
eq := G = 1+z*G+z^2*(G-1)*((1-z)*G+z/(1-z)): G := RootOf(eq,G): Gser := series(G,z=0,38): seq(coeff(Gser,z,n), n = 0 .. 33);
Formula
G.f.: G=G(z) satisfies the equation G=1+zG+z^2*(G-1)[(1-z)G+z/(1-z)].
D-finite with recurrence (n+2)*a(n) +5*(-n-1)*a(n-1) +2*(4*n+1)*a(n-2) +(-6*n+5)*a(n-3) +(8*n-27)*a(n-4) +2*(-7*n+31)*a(n-5) +(13*n-71)*a(n-6) +(-7*n+47)*a(n-7) +(3*n-25)*a(n-8) +(-n+9)*a(n-9)=0. - R. J. Mathar, Jul 22 2022
Comments