cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190162 Number of peakless Motzkin paths of length n containing no subwords of type dh^ju (j>=1), where u=(1,1), h=(1,0), and d=(1,-1) (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 36, 77, 167, 365, 805, 1790, 4008, 9033, 20477, 46663, 106843, 245691, 567194, 1314086, 3054442, 7120951, 16647056, 39015476, 91654385, 215780420, 509033640, 1203085539, 2848445175, 6755095119, 16044373511, 38162885226, 90897048648
Offset: 0

Views

Author

Emeric Deutsch, May 05 2011

Keywords

Comments

a(n)=A098083(n,0).

Examples

			a(7)=36 because among the 37 (=A004148(7)) peakless Motzkin paths of length 7 only uh(dhu)hd has a subword of the forbidden type (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*(G-1)*((1-z)*G+z/(1-z)): G := RootOf(eq,G): Gser := series(G,z=0,38): seq(coeff(Gser,z,n), n = 0 .. 33);

Formula

G.f.: G=G(z) satisfies the equation G=1+zG+z^2*(G-1)[(1-z)G+z/(1-z)].
D-finite with recurrence (n+2)*a(n) +5*(-n-1)*a(n-1) +2*(4*n+1)*a(n-2) +(-6*n+5)*a(n-3) +(8*n-27)*a(n-4) +2*(-7*n+31)*a(n-5) +(13*n-71)*a(n-6) +(-7*n+47)*a(n-7) +(3*n-25)*a(n-8) +(-n+9)*a(n-9)=0. - R. J. Mathar, Jul 22 2022