cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190165 Number of peakless Motzkin paths of length n having no (1,0)-steps at levels 0,2,4,... .

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 4, 7, 12, 22, 41, 76, 142, 268, 509, 971, 1861, 3583, 6925, 13430, 26128, 50980, 99735, 195594, 384454, 757256, 1494465, 2954715, 5851677, 11607348, 23058492, 45870685, 91371464, 182231978, 363871075, 727364502, 1455503056, 2915461721, 5845386764, 11730347948
Offset: 0

Views

Author

Emeric Deutsch, May 06 2011

Keywords

Comments

a(n) = A190164(n,0).

Examples

			a(6)=2 because we have uhduhd and uhhhhd, where u=(1,1), h=(1,0), d=(1,-1).
		

Crossrefs

Programs

  • Maple
    eq := z^2*(1+z^2)*G^2-(1+z^2)*(1-z+z^2)*G+1-z+z^2 =0: g:=RootOf(eq,G): Gser:=series(g,z=0,46): seq(coeff(Gser,z,n),n=0..40);

Formula

G.f. G=G(z) satisfies the equation z^2*(1+z^2)G^2 - (1+z^2)(1-z+z^2)G + 1-z+z^2=0.
D-finite with recurrence +(n+2)*a(n) +(-2*n-1)*a(n-1) +(n+1)*a(n-2) +(-2*n+1)*a(n-3) +(-2*n+11)*a(n-5) +(n-7)*a(n-6) +(-2*n+13)*a(n-7) +(n-8)*a(n-8)=0. - R. J. Mathar, Jul 24 2022