cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190166 Number of (1,0)-steps at levels 0,2,4,... in all peakless Motzkin paths of length n.

Original entry on oeis.org

0, 1, 2, 3, 6, 14, 34, 83, 202, 495, 1224, 3046, 7616, 19115, 48130, 121527, 307602, 780244, 1982834, 5047377, 12867438, 32847357, 83952780, 214806750, 550170300, 1410412561, 3618785462, 9292203549, 23877482490, 61397367692, 157972743178, 406693829059, 1047585820586, 2699811117189
Offset: 0

Views

Author

Emeric Deutsch, May 06 2011

Keywords

Comments

a(n)=Sum(k*A190164(n,k),k>=0).
a(n)=A110236(n) - A190169(n).

Examples

			a(4)=6 because in h'h'h'h', h'uhd, uhdh', and uhhd, where u=(1,1), h=(1,0), d=(1,-1), we have 4+1+1+0 h-steps at even levels (marked).
		

Crossrefs

Programs

  • Maple
    G := z/((1-z+z^2)*sqrt((1+z+z^2)*(1-3*z+z^2))): Gser := series(G,z=0,36): seq(coeff(Gser,z,n),n=0..33);

Formula

G.f. = z/[(1-z+z^2)sqrt((1+z+z^2)(1-3z+z^2))].
Conjecture: (-n+1)*a(n) +(3*n-4)*a(n-1) +2*(-n+1)*a(n-2) +3*(n-2)*a(n-3) +2*(-n+3)*a(n-4) +(3*n-8)*a(n-5) +(-n+3)*a(n-6)=0. - R. J. Mathar, Apr 09 2019
a(n) ~ phi^(2*n+2) / (4 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 29 2022