cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190169 Number of (1,0)-steps at levels 1,3,5,... in all peakless Motzkin paths of length n.

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 24, 60, 152, 386, 980, 2488, 6324, 16098, 41032, 104711, 267512, 684138, 1751316, 4487217, 11506792, 29530524, 75841152, 194910254, 501234960, 1289755668, 3320603016, 8553723949, 22044934324, 56841474482, 146626826376, 378392593206, 976884539336, 2522936490418
Offset: 0

Views

Author

Emeric Deutsch, May 06 2011

Keywords

Comments

a(n)=Sum(k*A190167(n,k),k>=0).
a(n)=A110236(n) - A190166(n).

Examples

			a(4)=4 because in hhhh, huh'd, uh'dh, and uh'h'd, where u=(1,1), h=(1,0), d=(1,-1), we have 0+1+1+2 h-steps at odd levels (marked).
		

Crossrefs

Programs

  • Maple
    G := ((1-2*z+z^2-2*z^3+z^4)*1/2)/(z*(1-z+z^2)*sqrt((1+z+z^2)*(1-3*z+z^2)))-(1/2)/z: Gser:=series(G,z=0,36): seq(coeff(Gser,z,n),n=0..33);

Formula

G.f. = (1-2z+z^2-2z^3+z^4)/[2z(1-z+z^2)sqrt((1+z+z^2)(1-3z+z^2))]-1/(2z).
Conjecture: -(n-1)*(n+1)*a(n) -n*(n-19)*a(n-1) +2*(n-1)*(7*n-40)*a(n-2) -(n-2)*(17*n-97)*a(n-3) +2*(9*n^2-64*n+119)*a(n-4) -17*(n-4)*(n-5)*a(n-5) +(19*n-59)*(n-5)*a(n-6) -2*(8*n-21)*(n-6)*a(n-7) +2*(2*n-5)*(n-7)*a(n-8)=0. - R. J. Mathar, Apr 09 2019