A190169 Number of (1,0)-steps at levels 1,3,5,... in all peakless Motzkin paths of length n.
0, 0, 0, 1, 4, 10, 24, 60, 152, 386, 980, 2488, 6324, 16098, 41032, 104711, 267512, 684138, 1751316, 4487217, 11506792, 29530524, 75841152, 194910254, 501234960, 1289755668, 3320603016, 8553723949, 22044934324, 56841474482, 146626826376, 378392593206, 976884539336, 2522936490418
Offset: 0
Keywords
Examples
a(4)=4 because in hhhh, huh'd, uh'dh, and uh'h'd, where u=(1,1), h=(1,0), d=(1,-1), we have 0+1+1+2 h-steps at odd levels (marked).
Programs
-
Maple
G := ((1-2*z+z^2-2*z^3+z^4)*1/2)/(z*(1-z+z^2)*sqrt((1+z+z^2)*(1-3*z+z^2)))-(1/2)/z: Gser:=series(G,z=0,36): seq(coeff(Gser,z,n),n=0..33);
Formula
G.f. = (1-2z+z^2-2z^3+z^4)/[2z(1-z+z^2)sqrt((1+z+z^2)(1-3z+z^2))]-1/(2z).
Conjecture: -(n-1)*(n+1)*a(n) -n*(n-19)*a(n-1) +2*(n-1)*(7*n-40)*a(n-2) -(n-2)*(17*n-97)*a(n-3) +2*(9*n^2-64*n+119)*a(n-4) -17*(n-4)*(n-5)*a(n-5) +(19*n-59)*(n-5)*a(n-6) -2*(8*n-21)*(n-6)*a(n-7) +2*(2*n-5)*(n-7)*a(n-8)=0. - R. J. Mathar, Apr 09 2019
Comments