cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A089735 Self-convolution of A004148 (the RNA secondary structure numbers) with itself.

Original entry on oeis.org

1, 2, 3, 6, 13, 28, 62, 140, 320, 740, 1728, 4068, 9645, 23010, 55195, 133042, 322078, 782758, 1909091, 4671098, 11462607, 28204212, 69569278, 171993316, 426111203, 1057757858, 2630527679, 6552998126, 16350465147, 40857321696, 102239831436
Offset: 0

Views

Author

Emeric Deutsch, Jan 07 2004

Keywords

Comments

Number of (1,0) steps at level zero in all peakless Motzkin paths of length n+1 (can be easily expressed also in RNA secondary structure terminology). Example: a(3)=6 because in the four peakless Motzkin paths of length four, namely H'H'H'H', H'UHD, UHDH' and UHHD, where U=(1,1), D=(1,-1), H=(1,0), we have six H steps at level zero (indicated by H'). Lim_{n->infinity} a(n)/A004148(n) = 2.
Number of UHD's starting at level 0 in all peakless Motzkin paths of length n+3; here U=(1,1), H=(1,0), and D=(1,-1). Example: a(1)=2 because in HHHH, H(UHD), (UHD)H, and UHHD we have a total of 0+1+1+0 UHD's starting at level 0 (shown between parentheses).

Crossrefs

Formula

a(n) = 2*Sum_{k=ceiling((n+1)/2)..n} binomial(k, n-k)*binomial(k+1, n-k+2)/k for n >= 1.
a(n) = A004148(n+2) - A004148(n+1) + A004148(n).
G.f. = 4/(1 - z + z^2 + sqrt(1 - 2z - z^2 - 2z^3 + z^4))^2.
G.f. = z^3*S^2, where S=S(z) is given by S = 1 + zS + z^2*S(S-1) (the g.f. of the RNA secondary structure numbers, A004148).
a(n) ~ 5^(1/4) * phi^(2*n+4) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 29 2022
D-finite with recurrence (n+4)*a(n) +(-3*n-7)*a(n-1) +2*n*a(n-2) +3*(-n+1)*a(n-3) +2*(n-2)*a(n-4) +(-3*n+13)*a(n-5) +(n-6)*a(n-6)=0. - R. J. Mathar, Jul 26 2022

A190171 Number of peakless Motzkin paths of length n having no UHD's starting at level 0; here U=(1,1), H=(1,0), and D=(1,-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 12, 27, 60, 135, 309, 717, 1680, 3966, 9423, 22518, 54091, 130540, 316358, 769577, 1878497, 4599623, 11294640, 27807381, 68627188, 169746823, 420732391, 1044830875, 2599352149, 6477571270, 16167429874, 40411920571, 101153167258, 253522241008
Offset: 0

Views

Author

Emeric Deutsch, May 06 2011

Keywords

Comments

a(n)=A190170(n,0).

Examples

			a(4)=2 because we have HHHH and UHHD.
		

Crossrefs

Cf. A190170.

Programs

  • Maple
    p1 := G-1-z*G-z^2*G*(S-1-z): p2 := S-1-z*S-z^2*S*(S-1): r := resultant(p1, p2, S): g := RootOf(r, G): Gser := simplify(series(g, z = 0, 40)): seq(coeff(Gser, z, n), n = 0 .. 33);
  • Mathematica
    CoefficientList[Series[2/(1 + Sqrt[(1 + (-3 + x)*x)*(1 + x + x^2)] + x*(-1 + x + 2*x^2)), {x, 0, 40}], x] (* Vaclav Kotesovec, May 29 2022 *)

Formula

G.f. G=G(z) is obtained by elimitaing S from the equations G=1+zG+z^2*G(S-1-z) and S=1+zS+z^2*S(S-1).
From Vaclav Kotesovec, May 29 2022: (Start)
G.f.: 2/(1 + sqrt((1 + (-3 + x)*x)*(1 + x + x^2)) + x*(-1 + x + 2*x^2)).
a(n) ~ 5^(1/4) * phi^(2*n+6) / (18 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. (End)
Conjecture D-finite with recurrence (n+2)*a(n) +(-n+1)*a(n-1) +2*(-2*n-1)*a(n-2) +9*a(n-3) +(-n+1)*a(n-4) -9*a(n-5) +2*(-2*n+5)*a(n-6) +(-n+1)*a(n-7) +(n-4)*a(n-8)=0. - R. J. Mathar, Jul 22 2022
Showing 1-2 of 2 results.