cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190171 Number of peakless Motzkin paths of length n having no UHD's starting at level 0; here U=(1,1), H=(1,0), and D=(1,-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 12, 27, 60, 135, 309, 717, 1680, 3966, 9423, 22518, 54091, 130540, 316358, 769577, 1878497, 4599623, 11294640, 27807381, 68627188, 169746823, 420732391, 1044830875, 2599352149, 6477571270, 16167429874, 40411920571, 101153167258, 253522241008
Offset: 0

Views

Author

Emeric Deutsch, May 06 2011

Keywords

Comments

a(n)=A190170(n,0).

Examples

			a(4)=2 because we have HHHH and UHHD.
		

Crossrefs

Cf. A190170.

Programs

  • Maple
    p1 := G-1-z*G-z^2*G*(S-1-z): p2 := S-1-z*S-z^2*S*(S-1): r := resultant(p1, p2, S): g := RootOf(r, G): Gser := simplify(series(g, z = 0, 40)): seq(coeff(Gser, z, n), n = 0 .. 33);
  • Mathematica
    CoefficientList[Series[2/(1 + Sqrt[(1 + (-3 + x)*x)*(1 + x + x^2)] + x*(-1 + x + 2*x^2)), {x, 0, 40}], x] (* Vaclav Kotesovec, May 29 2022 *)

Formula

G.f. G=G(z) is obtained by elimitaing S from the equations G=1+zG+z^2*G(S-1-z) and S=1+zS+z^2*S(S-1).
From Vaclav Kotesovec, May 29 2022: (Start)
G.f.: 2/(1 + sqrt((1 + (-3 + x)*x)*(1 + x + x^2)) + x*(-1 + x + 2*x^2)).
a(n) ~ 5^(1/4) * phi^(2*n+6) / (18 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. (End)
Conjecture D-finite with recurrence (n+2)*a(n) +(-n+1)*a(n-1) +2*(-2*n-1)*a(n-2) +9*a(n-3) +(-n+1)*a(n-4) -9*a(n-5) +2*(-2*n+5)*a(n-6) +(-n+1)*a(n-7) +(n-4)*a(n-8)=0. - R. J. Mathar, Jul 22 2022