This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190172 #4 Mar 30 2012 17:36:27 %S A190172 1,1,1,1,1,2,2,4,4,8,8,1,16,18,3,33,40,9,69,90,25,1,146,204,69,4,312, %T A190172 467,183,16,673,1074,479,56,1,1463,2481,1239,185,5,3202,5752,3180,576, %U A190172 25,7050,13378,8104,1734,105,1,15605,31196,20544,5076,405,6,34705,72912,51852,14546,1451,36 %N A190172 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n having k UHD's; here U=(1,1), H=(1,0), and D=(1,-1). %C A190172 Number of entries in row n is 1+floor(n/3). %C A190172 Sum of entries in row n = A004148 (the RNA secondary structure numbers). %C A190172 T(n,0)=A004149(n). %C A190172 Sum(k*T(n,k),k>=0)=A110236(n-2) (n>=3). %F A190172 G.f. G=G(t,z) satisfies the equation G = 1 + zG + z^2*G(G-1-z+tz). %e A190172 T(5,1)=4 because we have HHUHD, HUHDH, UHDH, and UUHDD. %e A190172 Triangle starts: %e A190172 1; %e A190172 1; %e A190172 1; %e A190172 1,1; %e A190172 2,2; %e A190172 4,4; %e A190172 8,8,1; %e A190172 16,18,3; %p A190172 eq := G = 1+z*G+z^2*G*(G-1-z+t*z): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 17 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 17 do seq(coeff(P[n], t, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form %Y A190172 Cf. A004148, A004149, A110236 %K A190172 nonn,tabf %O A190172 0,6 %A A190172 _Emeric Deutsch_, May 06 2011