A190174 Number of vertices of even degree in the rooted tree with Matula-Goebel number n.
1, 0, 1, 1, 2, 2, 0, 0, 3, 3, 3, 1, 1, 1, 4, 1, 1, 2, 1, 2, 2, 4, 2, 2, 5, 2, 3, 0, 2, 3, 4, 0, 5, 2, 3, 3, 2, 2, 3, 3, 2, 1, 0, 3, 4, 3, 3, 1, 1, 4, 3, 1, 0, 4, 6, 1, 3, 3, 2, 4, 3, 5, 2, 1, 4, 4, 2, 1, 4, 2, 3, 2, 1, 3, 5, 1, 4, 2, 3, 2, 5, 3, 3, 2, 4, 1
Offset: 1
Keywords
Examples
a(5)=2 because the rooted tree with Matula-Goebel number 5 is the path tree on 4 vertices and the vertex degrees are 1,1,2,2; a(7)=0 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y having vertices of degree 1,1,1,3.
Links
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Maple
with(numtheory): g := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then sort(expand(g(pi(n))+x^bigomega(pi(n))*(x-1)+x)) else sort(expand(g(r(n))+g(s(n))-x^bigomega(r(n))-x^bigomega(s(n))+x^bigomega(n))) end if end proc: a := proc (n) options operator, arrow: (1/2)*subs(x = 1, g(n))+(1/2)*subs(x = -1, g(n)) end proc: seq(a(n), n = 1 .. 110);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; g[n_] = Which[n == 1, 1, PrimeOmega[n] == 1, g[PrimePi[n]] + x^PrimeOmega[PrimePi[n]]*(x - 1) + x , True, g[r[n]] + g[s[n]] - x^PrimeOmega[r[n]] - x^PrimeOmega[s[n]] + x^PrimeOmega[n]]; a[n_] := (1/2)(g[n] /. x -> 1) + (1/2)(g[n] /. x -> -1); Table[a[n], {n, 1, 110}] (* Jean-François Alcover, Jun 20 2024, after Maple code *)
Formula
For a graph with degree sequence a,b,c,..., define the degree sequence polynomial to be x^a + x^b + x^c + ... . The degree sequence polynomial g(n)=g(n,x) of the rooted tree with Matula-Goebel number n can be obtained recursively in the following way: g(1)=1; if n=prime(t), then g(n)=g(t)+x^G(t)*(x-1)+x; if n=r*s (r,s>=2), then g(n)=g(r)+g(s)-x^G(r)-x^G(s)+x^G(n); G(m) is the number of prime divisors of m counted with multiplicities. Clearly, a(n)=(1/2)*(g(n,1) + g(n,-1)).
Comments