cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190175 The Goebel-Matula numbers of the rooted trees having only vertices of odd degree.

Original entry on oeis.org

2, 7, 8, 28, 32, 43, 53, 98, 112, 128, 172, 212, 227, 263, 311, 343, 392, 443, 448, 512, 577, 602, 688, 742, 848, 908, 1052, 1193, 1244, 1372, 1423, 1568, 1619, 1772, 1792, 1993, 2048, 2107, 2308, 2311, 2408, 2539, 2597, 2752, 2939, 2968, 3178, 3209, 3392, 3632, 3682, 3698, 3779
Offset: 1

Views

Author

Emeric Deutsch, Oct 30 2011, Dec 09 2011

Keywords

Comments

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

Examples

			7 is in the sequence because the rooted tree with Matula-Goebel number 7 is the rooted tree Y with vertices of degree 1,1,1,3.
15 is not in the sequence because the rooted tree with Matula-Goebel number 15 is the path tree ABRCDE, rooted at R; it has 2 vertices of degree 1 and 4 vertices of degree 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): g := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then sort(expand(g(pi(n))+x^bigomega(pi(n))*(x-1)+x)) else sort(expand(g(r(n))+g(s(n))-x^bigomega(r(n))-x^bigomega(s(n))+x^bigomega(n))) end if end proc: a := proc (n) options operator, arrow: (1/2)*subs(x = 1, g(n))+(1/2)*subs(x = -1, g(n)) end proc: A := {}: for n to 4000 do if a(n) = 0 then A := `union`(A, {n}) else  end if end do: A;
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    g[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, g[PrimePi[n]] + x^PrimeOmega[PrimePi[n]]*(x - 1) + x, True, g[r[n]] + g[s[n]] - x^PrimeOmega[r[n]] - x^PrimeOmega[s[n]] + x^PrimeOmega[n]];
    a[n_] := (1/2)(g[n] /. x -> 1) + (1/2)(g[n] /. x -> -1);
    A = {};
    Do[If[a[n] == 0, A = Union[A, {n}]], {n, 1, 4000}];
    A (* Jean-François Alcover, Jun 20 2024, after Maple code *)

Formula

The number of vertices of even degree of the rooted trees with Matula-Goebel number n is A190174(n). The number n is in the sequence if and only if A190174(n)=0.
In A182907 one can find the generating polynomial g(n)=g(n,x) of the vertices of the rooted tree having Matula-Goebel number n, according to degree. We look for those values of n for which the polynomial g(n,x) is odd, i.e. satisfies g(n,-x)=-g(n,x).