This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190177 #18 Jun 25 2025 01:08:18 %S A190177 3,1,7,4,6,7,3,8,9,4,0,3,4,1,9,8,9,2,2,9,5,8,0,7,4,4,1,2,2,1,7,2,4,3, %T A190177 6,4,2,9,7,4,7,8,6,1,5,8,4,1,2,1,9,6,8,7,2,9,8,3,9,9,1,1,8,5,4,1,0,0, %U A190177 5,5,6,5,1,4,4,6,7,5,0,7,8,7,0,3,2,2,7,3,6,2,7,3,8,2,3,0,1,0,0,7,3,9,0,6,8,1,8,5,8,2,5,9,5,1,7,6,4,3,9,0 %N A190177 Decimal expansion of (1+sqrt(2)+sqrt(7+6*sqrt(2)))/2. %C A190177 Let R denote a rectangle whose shape (i.e., length/width) is (1+sqrt(2)+sqrt(7+6*sqrt(2)))/2. R can be partitioned into squares and silver rectangles in a manner that matches the periodic continued fraction [r,1,r,1,r,1,r,1,...], where r is the silver ratio: 1+sqrt(2)=[2,2,2,2,2,...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [3,5,1,2,1,1,1,2,...] at A190178. For details, see A188635. %H A190177 G. C. Greubel, <a href="/A190177/b190177.txt">Table of n, a(n) for n = 1..10000</a> %H A190177 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>. %e A190177 3.174673894034198922958074412217243642975... %t A190177 r = 1 + 2^(1/2); %t A190177 FromContinuedFraction[{r, 1, {r, 1}}] %t A190177 FullSimplify[%] %t A190177 ContinuedFraction[%, 100] (* A190178 *) %t A190177 RealDigits[N[%%, 120]] (* A190177 *) %t A190177 N[%%%, 40] %t A190177 RealDigits[(1+Sqrt[2]+Sqrt[7+6*Sqrt[2]])/2, 10, 100][[1]] (* _G. C. Greubel_, Dec 28 2017 *) %o A190177 (PARI) (1+sqrt(2)+sqrt(7+6*sqrt(2)))/2 \\ _G. C. Greubel_, Dec 28 2017 %o A190177 (Magma) [(1+Sqrt(2)+Sqrt(7+6*Sqrt(2)))/2]; // _G. C. Greubel_, Dec 28 2017 %Y A190177 Cf. A188635, A190178, A189970, A190179. %K A190177 nonn,cons %O A190177 1,1 %A A190177 _Clark Kimberling_, May 05 2011