This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190180 #16 Jun 25 2025 01:08:38 %S A190180 1,3,5,1,2,1,1,1,2,1,12,1,5,1,1,2,1,14,2,9,11,1,12,1,2,1,832,1,2,2,5, %T A190180 1,1,17,1,2,1,9,1,12,1,1,1,6,3,2,1,1,6,3,1,1,1,2,2,1,3,1,3,3,1,2,1,45, %U A190180 1,1,1,1,62,9,1,1,2,3,1,6,1,3,5,1 %N A190180 Continued fraction of (1+sqrt(-3+4*sqrt(2)))/2. %C A190180 Equivalent to the periodic continued fraction [1,r,1,r,...] where r=1+sqrt(2), the silver ratio. For geometric interpretations of both continued fractions, see A189979 and A188635. %C A190180 1 followed by A190178. %H A190180 G. C. Greubel, <a href="/A190180/b190180.txt">Table of n, a(n) for n = 1..10000</a> %t A190180 r = 1 + 2^(1/2); %t A190180 FromContinuedFraction[{1, r, {1, r}}] %t A190180 FullSimplify[%] %t A190180 ContinuedFraction[%, 100] (* A190180 *) %t A190180 RealDigits[N[%%, 120]] (* A190179 *) %t A190180 N[%%%, 40] %t A190180 ContinuedFraction[(1 + Sqrt[-3 + 4*Sqrt[2]])/2, 100] (* _G. C. Greubel_, Dec 28 2017 *) %o A190180 (PARI) contfrac((1+sqrt(-3+4*sqrt(2)))/2) \\ _G. C. Greubel_, Dec 28 2017 %o A190180 (Magma) ContinuedFraction((1+Sqrt(-3+4*Sqrt(2)))/2); // _G. C. Greubel_, Dec 28 2017 %Y A190180 Cf. A190179, A188635, A190177, A190178. %K A190180 nonn,cofr %O A190180 1,2 %A A190180 _Clark Kimberling_, May 05 2011