This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190183 #12 Sep 08 2022 08:45:56 %S A190183 2,4,1,3,10,1,3,1,1,2,66,1,4,2,1,1,48,5,1,1,2,1,1,1,8,2,1,1,4,16,2,2, %T A190183 1,4,1,3,1,3,1,11,1,1,8,16,1,1,1,10,1,2,4,1,1,1,3,1,1,1,1,30,1,1,2,1, %U A190183 1,8,13,1,1,6,6,1,6,1,1,2,2,10,1,2,7,9,2,4,7,3,1,2,2,1,2,5,4,2,3,2,3,2,1,3 %N A190183 Continued fraction of (1+x+sqrt(8+2x))/4, where x=sqrt(15). %C A190183 Equivalent to the periodic continued fraction [r,1,1,r,1,1,...] where r=(1+sqrt(5))/2, the golden ratio. For geometric interpretations of both continued fractions, see A190182 and A188635. %H A190183 G. C. Greubel, <a href="/A190183/b190183.txt">Table of n, a(n) for n = 1..10000</a> %t A190183 r = (1 + 5^(1/2))/2; %t A190183 FromContinuedFraction[{r, 1, 1, {r, 1, 1}}] %t A190183 FullSimplify[%] %t A190183 ContinuedFraction[%, 100] (* A190183 *) %t A190183 RealDigits[N[%%, 120]] (* A190182 *) %t A190183 N[%%%, 40] %t A190183 ContinuedFraction[(1+Sqrt[15]+Sqrt[8+2Sqrt[15]])/4,100] (* _Harvey P. Dale_, Apr 29 2013 *) %o A190183 (PARI) contfrac((1+sqrt(15)+sqrt(8+2*sqrt(15)))/4) \\ _G. C. Greubel_, Dec 28 2017 %o A190183 (Magma) ContinuedFraction((1+Sqrt(15)+Sqrt(8+2*Sqrt(15)))/4); // _G. C. Greubel_, Dec 28 2017 %Y A190183 Cf. A190182, A188635. %K A190183 nonn,cofr %O A190183 1,1 %A A190183 _Clark Kimberling_, May 05 2011